
Realizability Checking of Live Sequence Charts

Daniel Ejsing-Duun, Lisa Fontani, Jonas Finnemann Jensen,
Lars Kærlund Østergaard

Department of Computer Science, Aalborg University, Denmark

Abstract. Live Sequence Charts (LSC) is a graphical formalism for
defining inter-object communication in an intuitive way. Their precise
semantics makes it possible for developers to check for inconsistencies in
the specification of a system, composed of a set of LSCs, and to auto-
matically synthesize a conforming controller.
We propose a syntax and semantics for a subset of LSCs and present
a tool that enables the user to specify system requirements with this
subset of the LSC formalism. The tool is able to determine by means
of a game-theoretic approach, also introduced in this work, whether the
specification of a system is realizable. In this way the tool allows for
the specification of a system in an intuitive way and immediately states
whether the design can be implemented or if there are any contradicting
requirements.

1 Introduction

Communication between users and developers of systems has been a longstand-
ing problem, since they often express wishes or requirements in different and
incompatible ways. While users find it natural to describe the scenarios they
wish to model in a system, the developers are more concerned with knowing the
exact state of the system at certain points in time and what should happen in
between.

Live Sequence Charts (LSC) were introduced by Damm and Harel in 1999 [5]
as an extension to Message Sequence Charts (MSC), a visualization tool widely
used within the industry to specify requirements and design based on inter-object
communication. They use messages between system components to describe the
specification of a system, thereby focusing on inter-object behavior. This way of
specifying requirements makes it easy for users to express their wishes by means
of scenarios that describe legal and illegal actions, without having to consider the
internal state of each component and how this state may evolve. Each scenario
can either specify a sequence of actions that must be executed every time a set
of conditions is met through a so-called universal chart, or it can express that
the system should allow the execution of a given scenario through a so-called
existential chart.

An example of such a scenario can be seen in Figure 1, where a universal
chart for how a coffee machine should behave when given money and asked for
coffee is specified. There are two ”actors” in this scenario, the coffee machine



Machine Customer

GiveMoney

AskCoffee

PrepCoffee

ServeCoffee

MoneyBack

Prechart

Main chart

Forbidden

Fig. 1: A universal Live Sequence Chart specifying that each time the coffee machine
receives money and is afterwards asked for coffee, it should provide the coffee without
giving any money back.

and the costumer, represented by the boxes on top of the figure. The first part of
the chart, delimited by a dashed line, makes up the prechart that specifies which
conditions activate the next part of the chart. This is the main chart, where a
sequence of actions that must happen if the prechart is satisfied, is specified. The
section labeled forbidden in the Figure shows which messages are not allowed
between certain objects during the execution of the chart.

So, an implementation of a coffee machine satisfying this chart must prepare
and serve coffee each time it receives money and is asked for coffee, in that
order. However, the machine is not allowed to give money back at any moment
during the chart. If it does during the prechart, the chart is reset, while it would
lead to a violation if it happened during the main chart, where it has already
begun preparing the coffee. Of course, for the sake of completeness it would be
necessary to add another chart stating that money cannot be given back if the
coffee has already been made (assuming correct change was given) and no more
money was put into the machine.

The graphical notation makes the specification and understanding of a sce-
nario intuitive and straightforward for the user. At the same time, developers
can use the charts to form the base of an implementation that satisfies the re-
quirements specified, provided these can be satisfied.

The LSC formalism is a possible solution to the limitations related to the
expressiveness of MSCs, since they only specify a certain deterministic execution
of a system. Now it is also possible to define whether the specified execution is
mandatory, and to include branching structures, advanced timing features and
much more.

In the following sections we consider a subset of LSCs that does not include
all control-flow capabilities nor conditions and messages/locations are only hot,

2



meaning that they must be executed eventually. This subset provides sufficient
expressive power to model non-trivial systems [1]. Furthermore, it makes it easier
to develop a usable, automated tool that is practical and still allows verification
and synthesis to be tractable.

In this work we will construct a graphical tool for specifying LSCs directly
by means of their graphical notation. The tool will also allow checking the real-
izability of a system specification, expressed through LSCs, by translating it to
a two-player game.

A running demo of the tool can be found on http://jopsen.github.

com/LiveSC and the source code is available on https://github.com/jopsen/

LiveSC.

1.1 Related Work

Automatic synthesis of systems based on LSC specifications has first been ex-
plored in [8], where it is proven that if an LSC specification is consistent then
there exists an implementation satisfying it. An algorithm for checking the con-
sistency of the specification is presented. This constructs a global system automa-
ton which is used to construct a controller strategy that can then be distributed
to and used at the different components of a system.

This idea is revisited to avoid the high complexity of the synthesis algorithms
from [8] that do not scale to large systems [10]. Also, a sound but not complete
implementation that generates statechart models and uses model checking to
ensure realizability is presented.

Unfortunately, even for the subset of LSCs that we consider, automatic check-
ing of realizability, also called synthesis, has been proven to be EXPTIME-
complete in a centralized setting [3] and undecidable for distributed systems
[19]. In the former setting we wish to obtain a common strategy for all compo-
nents, while in the latter we require a strategy for each component that can be
distributed and is independent of the strategies of the other components. Certain
heuristics, though, can help in this area. Verifying if an implementation satisfies
a specification has been shown to be PSPACE-complete for both centralised and
distributed systems with environment objects [3]. The same result applies the
reachability problem in general.

An unwinding approach has been used to construct Büchi automata from
LSCs extended with some notion of invariants and conditions [14]. Unwinding
also allows to construct a partially ordered timed symbolic automaton for the
prechart and main chart of each LSC. Consequently, the problem of verifying
the LSCs corresponds to a reachability problem in this automaton [13].

The synthesis problem is translated to a game structure in [15,4], where all
the inputs to the system represent the environment, the system’s adversary in
the game, and all parts of the system together constitute the player that we wish
to find a winning strategy for.

Various tools have been developed to both design LSCs and for realizability
checking. The Play Engine [11] allows users to ”Play in” scenarios by working

3

http://jopsen.github.com/LiveSC
http://jopsen.github.com/LiveSC
https://github.com/jopsen/LiveSC
https://github.com/jopsen/LiveSC


with a GUI symbolizing the various functions of the system, which in turn pro-
duces a set of charts. It is also possible to check cases against the specification by
”Playing out” the scenarios, i.e. the user performs the role of the environment by
interacting with the GUI and observes the reaction of the system, without the
need to synthesize a controller for the system. The system responds to inputs
by keeping track of the conditions that make charts become active and, when
needed, executing the behavior mandated by universal charts. In the meantime
the system also keeps track of the execution of existential charts and marks
them when they have been executed. Finally, the method has been extended
with model checking to help find a correct superstep, i.e. a sequence of system
messages that when executed does not violate any active universal chart [9]. This
extension, called Smart play-out, is however strictly weaker than synthesis [7],
since it only looks one step ahead, i.e. the next sequence of events that makes all
universal charts become inactive, and does not take into consideration whether
the system from this next state could receive an input that forces it to violate
the specification.

An extension to the Play Engine that also implements a game theoretic
approach has been presented in [15]. This extension can check for the realizability
of the specification and produce a controller for the system, provided that there
are no inconsistencies in the specification. The winning strategy can then be
used to control the responses of the system in a play-out approach.

On the other side, the possibility of directly translating a LSC into code
has been made available by the development of the BPJ library that allows
the developer to use behavioral programming in Java [12]. A complex behavior
between different objects can be described through simple scenario descriptions
of relatively independent events. These scenarios are implemented in behavioral
threads. These threads are allowed to wait for some event to happen, block
because of other threads requesting it and allowing some actions to trigger other
threads. Conflicts and deadlocks of behavioral threads can be checked using the
same techniques as for Smart play-out for LSCs. Behavioral threads have later
been extended to Erlang [21].

Unfortunately the tools mentioned either do not include realizability checking
or are no longer available. Our contributions are a concise syntax and semantics
for LSCs, a translation from LSCs to games and an easily accessible tool with
the goal of making the LSC formalism more attractive, especially for new users.
On top of that we implement on-the-fly realizability checking directly into the
working environment using symbolic model checking.

This paper describes the theoretical background of the tool. First we give an
introduction to the syntax and semantics of LSCs in Section 2, inspired by the
formalisms presented in [2,6]. In Section 3 we describe a game structure that we
shall use later on. A translation of the LSCs into games is presented in Section
4. A description of the tool itself is provided in Section 5. Finally, we provide
conclusions in Section 6.

4



2 Live Sequence Charts

An LSC may be used to specify the system in two ways: it can either define a
possible execution of the system with an existential chart or it can describe an
execution that must always be satisfied given some conditions with a universal
chart. These conditions can either quantify over the state of the components
through a boolean expression or over a sequence of messages that has been sent.
The two types are expressed through activation conditions and in precharts,
respectively. When these conditions are met the scenario expressed in the body
of the chart must be satisfied.

Moreover, it is possible to specify when the activation of a chart may occur
by defining its activation mode, which can be initial, invariant or iterative. The
initial mode signifies that the chart can only be activated at the start of an
execution. The invariant mode activates the chart each time both the activation
condition and the requirements of the prechart are met. In this way more in-
stances of the same chart may be active at the same time. Finally, the iterative
mode allows a chart to be activated again only after it has finished any initiated
execution of the chart.

Each component relevant to a chart is represented by a vertical line to and
from which a message can be sent. Messages can be synchronous, i.e. the message
is sent and received at the same time, or asynchronous where the message is
received at a later point in time. A message that is required to be sent is hot
and is represented with a solid line in a chart. A message that may be sent is
cold and is represented with a dashed line in a chart.

The interpretation of an LSC can either be strict or weak. A strict interpre-
tation disallows duplicate messages, while a weak interpretation discards dupli-
cates.

Finally an LSC focusses only on the ordering of messages that are defined in
it, and allows any other message to take place in the execution of the scenario,
unless it is explicitly forbidden. These constructs correspond to the constant
LSC introduced in [11] and represent the core elements of a LSC.

In this work we will deal with the realizability and synthesis of a system
defined through universal charts with an invariant activation mode, where only
hot synchronous messages appear, with a strict interpretation and with purely
synchronous messages.

We can relate this limited formalism to other extensions of LSCs that have
been presented, such as invariants and conditions on the state of the components
in a chart, synchronizations, loop constructs, etc. which give a higher degree of
expressiveness when providing LSC descriptions. Some of these advanced fea-
tures can be approximated by the subset of LSCs considered here.

5



2.1 Syntax

A LSC, as described in the introduction, can be divided into three main areas:
the prechart, the main chart, and the forbidden messages. The first two are
similar and the only difference lies in their interpretation. Therefore we can
describe these commonly as basic charts. The main elements in a basic chart
are the objects that send and receive messages on their associated lines, called
instance lines, and the messages exchanged in the chart.

Definition 1 (Basic Chart). A basic chart over the alphabet Σ and a finite
set of objects O is a tuple B = (Inst ,End ,Msg), where

– Inst ⊆ O is a finite set of objects where each has an associated instance line
in the basic chart,

– End : Inst → N0 maps an object of the chart to the number of messages on
the object’s instance line, and

– Msg ⊂ Inst ×N×Σ × Inst ×N is the finite set of message exchanges, such
that exchange e = (O1, a,m,O2, b) ∈ Msg when m starts as the a’th message
on the instance line for O1 and ends as the b’th message on the instance line
for O2.

Each number a ∈ N0, a ≤ End(O), is a location on the instance line for
O. We require that any location a > 0 on the instance line for O1 is used in
exactly one message exchange e ∈ Msg, where e = (O1, a,m,O2, b) or e =
(O2, b,m,O1, a) for any O2 ∈ Inst and b ∈ N.

We shall denote all messages exchanged from O1 to O2 by the set ΣO1,O2
,

i.e. m ∈ ΣO1,O2
if there exists a message exchange (O1, a,m, S,O2) ∈ Msg for

some basic chart B = (Inst ,End ,Msg) over the alphabet Σ. Without loss of
generality we assume that a message m ∈ Σ being exchanged from O1 to O2

is unique to these two objects. In other words, ΣO1,O2 ∩ ΣO′
1,O

′
2

= ∅, for all
O1, O2, O

′
1, O

′
2 ∈ O, when O1 6= O′1 and O2 6= O′2. Furthermore, we require that

all symbols inΣ are part of some alphabetΣO1,O2
, i.e.Σ =

⋃
(O1,O2)∈2Inst ΣO1,O2

.

6



Example 1 The LSC from Fig. 1 has been modified in Fig. 2 to highlight
the locations on each instance line. Both basic charts are defined over the al-
phabet Σ = {GiveMoney,AskCoffee,PrepCoffee,ServeCoffee,MoneyBack,
NOP}. The formal definition of the prechart is given by the basic chart
B = (Inst ,End ,Msg), where

Inst ={Machine,Costumer}
End ={Machine 7→ 2,Costumer 7→ 2}
Msg ={(Costumer, 1,GiveMoney,Machine, 1),

(Costumer, 2,AskCoffee,Machine, 2)}

The main chart can be defined similarly. Note that we have included
a message in the alphabet, NOP , which is irrelevant to this chart. This
demonstrates how the alphabet may contain more messages than actually
used, which may become relevant if there are other charts in the same system
using different messages. We shall revisit this when discussing the language
defined by an LSC.

Machine Customer

GiveMoney

AskCoffee

PrepCoffee

ServeCoffee

MoneyBack

1

2

0

1

2 1

0

1

2

00

Fig. 2: A chart defining the behavior of a coffee machine and a costumer. Locations on
instance lines have been highlighted.

7



Let B = (Inst ,End ,Msg) be a basic chart over the alphabet Σ. For con-
venience let msgs(B) = {m ∈ Σ | (O1, a,m,O2, b) ∈ Msg} denote the set of
messages present in B. Given these basic elements we can now formally define
LSCs.

Definition 2 (Live Sequence Chart). A LSC is a tuple L = (Pre,Main,F )
over an alphabet Σ and finite set of objects O, where

– Pre and Main are basic charts over Σ and O, and
– F ⊆ Σ is a finite set of forbidden messages, where F ∩ (msgs(Pre) ∪

msgs(Main)) = ∅.

Given a LSC L = (Pre,Main,F ), we denote the set of messages present in
L by msgs(L) = msgs(Pre) ∪msgs(Main) ∪ F .

Definition 3 (Specification). A specification S is a finite set of LSCs over
an alphabet Σ and a finite set of objects O.

2.2 Semantics

The semantics of an LSC is defined by an unwinding structure unfolding exe-
cuting the chart step by step. Overall we use the notion of a cut, which can be
visualized graphically as a jagged horizontal line across a basic chart, stating
for each instance line how many of its messages have been exchanged so far (see
Fig. 3). Progress in the chart consists of exchanging messages tied to locations,
meaning that every cut can be defined as the maximum location reached on each
instance line.

Definition 4 (Cut). Let B = (Inst ,End ,Msg) be a basic chart. A cut C is a
mapping C : Inst → N0, such that C(O) ≤ End(O) for all O ∈ Inst. Also, for
any message exchange e = (O1, a,m,O2, b) ∈ Msg, either C(O1) < a∧C(O2) < b
or C(O1) ≥ a ∧ C(O2) ≥ b.

The initial cut of a basic chart B = (Inst ,End ,Msg), denoted C0, maps each
object to the location 0. The maximal cut of B, denoted Cmax, maps each object
O ∈ Inst to the maximum location End(O) on its instance line. Formally, the
initial cut C0 and maximal cut Cmax are defined as follows.

C0(O) = 0 ∀O ∈ Inst

Cmax(O) = End(O) ∀O ∈ Inst

8



Example 2 The chart in Fig. 3 is an extended version of the previous
example. Now we see that the coffee machine has been split into two objects,
which also have a few new messages showing how the coffee is prepared and
how a light is turned on, indicating to the costumer that the machine is
working. The cut C shown over the main chart is defined as follows.

C(WaterTank) = 2

C(Interface) = 1

C(Customer) = 0

This indicates that the request for coffee and water in the main chart has
been made, but also that the light on the coffee machine has not yet been
turned on.

WaterTank CustomerInterface

GiveMoney

AskCoffee

GetCoffee

GetWater

GetBeans

ServeCoffee

ShowLight

MoneyBack

Fig. 3: A chart with a cut symbolized by a line. All messages above the line are part of
the cut and the messages below are not.

9



Definition 5 (Cut Transition). Given a basic chart B = (Inst ,End ,Msg)
over the alphabet Σ, a cut C and a message m ∈ Σ, we say that m is enabled at
C if there exists O1, O2 ∈ Inst such that (O1, C(O1)+1,m,O2, C(O2)+1) ∈ Msg.

If m is enabled at C, the cut C can transition to C ′, denoted C
m−→ C ′, where

C ′(O) =


C(O1) + 1 if O = O1

C(O2) + 1 if O = O2

C(O) otherwise.

By advancing the execution we may eventually reach the maximal cut Cmax,
where all messages in the chart have been exchanged.

Definition 6 (Run).
Given a basic chart B, a run γ = (C0,m1, C1,m2, . . . ,mn, Cn) of B is a sequence

of cuts and messages, where Cn = Cmax and Ci
mi+1−→ Ci+1 for all i such that

0 ≤ i < n.

We define the projection of a word w onto the alphabet Σ, denoted w|Σ , to
be the word w′ where all symbols not in Σ have been removed. Let B be a basic
chart over the alphabet Σ. We say that a word w ∈ Σ∗ is in the language L(B)
of B, if there exists a run γ of B such that γ|msgs(B) = w.

Example 3 Here we give an example of a run γ of the main chart shown
in Fig. 3.

γ =

(
C0,GetCoffee, C1,GetWater, C2,GetBeans,

C3,ShowLight, C4,ServeCoffee, Cmax

)
The initial cut C0 maps every object to the location 0. The next cut C1

maps both WaterTank and Interface to the location 1 and Customer to the
location 0. The cut C2 is the one shown in Fig. 3 (See Example 2). C3 is
the same as C2 except that WaterTank maps to the location 3. The cut C4

can be written as C4 = {WaterTank 7→ 3, Interface 7→ 2,Customer 7→ 1}.
Below we show the word defined by the run γ. Note that spaces are used in
between symbols to enhance readability.

γ|msgs(B) = GetCoffee GetWater GetBeans ShowLight ServeCoffee

The language of the main chart in Fig. 3 is as follows.

L(Main) = {GetCoffee GetWater GetBeans ShowLight ServeCoffee,

GetCoffee ShowLight GetWater GetBeans ServeCoffee,

GetCoffee GetWater ShowLight GetBeans ServeCoffee}

10



Similarly, a LSC L = (Pre,Main,F ) over the alphabet Σ defines a language
L(L).

Definition 7 (Language of a LSC). Let L = (Pre,Main,F ) be a LSC over
the alphabet Σ.

The language L(L) is a set containing all the words w ∈ Σ∗, such that for
any decomposition xyz of w, if y|msgs(L) ∈ L(Pre) then there is a decomposition
uv of z such that u|msgs(L) ∈ L(Main).

Recall that msgs(L) describes exactly the messages used in the LSC. More-
over, note that the substrings y and u do not contain any strings from F , since
the messages in F also are contained in msgs(L) and as such are kept in the
projected word, yet these messages are never part of any word in L(Pre) nor
L(Main).

Example 4 A part of the language of the LSC L in Fig. 3 is shown below.
Note that for brevity all messages are denoted by their initials (GetWater
becomes GW etc.):

L(L) = {GM AC GC SL GW GB SC,

GM AC GC SL GW GB SC GM GM GM,

GM AC GC GW SL GB SC GM AC GC SL GW GB SC,

NOP NOP GM NOP AC GC GW SL NOP GB NOP SC NOP, . . .}

Since the message NOP is not part of the messages of the chart, ie.
NOP /∈ msgs(L), it can in theory occur any number of times at any place
in any of the words of the language.

Finally, we define the language of a system specification as the intersection
of the language of every chart in the specification.

Definition 8 (Language of a Specification). Let S = {L1, L2, . . . , Ln} be a
specification. The language of S is defined as follows.

L(S) =

n⋂
i=1

L(Li)

To be able to synthesize a controller for the system that adheres to a given
specification, it is helpful to consider the problem as a two-player game, where
the system and environment play against each other. In this setting the objects of
the LSCs are partitioned into two sets: a set of objects SYS which the system has
control over, and a set ENV which the environment controls (ie. uncontrollable).

SYS ⊆ O ENV = O \ SYS

11



If we recall that ΣO1,O2
is the set of messages that is sent by O1 and received

by O2, we can, given a partitioning of objects O into ENV and SYS , define the
messages that can be sent (controlled) by environment objects ENV and system
objects SYS , as ΣENV and ΣSYS , respectively. The two alphabets are defined
as follows.

ΣENV =
⋃

O1∈ENV ,O2∈O
ΣO1,O2 ΣSYS =

⋃
O1∈SYS ,O2∈O

ΣO1,O2

Definition 9 (LSC Realizability Game). Let S be a system specification
over the alphabet Σ and the sets of controllable and uncontrollable objects be
SYS and ENV , respectively.

A LSC realizability game is a two-player game. In round i of the game, player
one (the environment) plays ai ∈ ΣENV , after which player two (the system)
plays wi ∈ Σ∗SYS .

We say that player two wins if the iteratively constructed infinite word
a1w1a2w2 . . . is in the language of S.

If there is a universal winning strategy for player two (the system), the spec-
ification S is said to be realizable.

3 Repeated Reachability Game

In this section we shall introduce a game structure, previously presented in [18],
which in this paper is referred to as a repeated reachability game. Later we will
translate the LSC realizability game into a repeated reachability game. Hence
by solving a repeated reachability game, we can decide the realizability of the
associated LSC specification. Other types of games can also be used for the same
purpose [15,17]. However, the analysis of these games is more complicated and
the added expressiveness do not offer any advantages for the subset of LSCs
considered here.

We introduce a two-player game between the environment and the system,
each having control over a finite set of variables. In each turn, the environment
first makes a move and then the system is allowed to respond. Each player can
make a move according to their transition relation that depends on the current
value of all variables, i.e. the configuration of the game. To win, the system has
to force the play into some specific configuration infinitely often.

Since this is a two-player game, the system is not able to control all transitions
of the game. As such, when searching for a winning strategy, the system must
for a given configuration consider both its own possible moves and those of
the environment, since it always wants to force the environment to change its
variables in a way such that the play ends up in a target configuration or at least
a configuration that the system has a strategy for.

12



Formally the repeated reachability game can be defined as follows.

Definition 10 (Repeated Reachability Game). A repeated reachability
game is a tuple G = (X,Y, x0, y0, ρX , ρY ,W ), where

– X and Y are two disjoint and finite sets of variables controlled by the en-
vironment and the system, respectively. Every variable ranges over a finite
domain. Let X and Y denote the sets of all valuations of the variables in
X and Y in the same order. A configuration of a game (x, y) is a valuation
over both the environment and system variables, i.e. x ∈ X and y ∈ Y.

– x0 ∈ X and y0 ∈ Y are the initial valuations of the variables in X and Y ,
respectively. We say that (x0, y0) is the initial configuration.

– ρX ⊆ X ×Y×X is the transition relation for the environment, such that for
any configuration (x, y) there exists at least one tuple (x, y, x′) ∈ ρX . Each
tuple (x, y, x′) in this relation says that in configuration (x, y) the environ-
ment variables can transition to x′.

– ρY ⊆ X × Y × Y is the transition relation for the system, such that for any
configuration (x, y) there exists at least one tuple (x, y, y′) ∈ ρY . Each tuple
(x, y, y′) in this relation says that in configuration (x, y) the system variables
can transition to y′.

– W ⊆ X × Y is the set of target configurations.

A strategy for the system is a function f : X ×Y ×X → Y, such that for all
x, x′ ∈ X and y ∈ Y it holds that f(x, y, x′) = y′ implies (x, y, y′) ∈ ρY .

Given a strategy f , a play σ according to f is an infinite sequence of
configurations σ = [(x0, y0), (x1, y1), (x2, y2), . . .], s.t. (xi, yi, xi+1) ∈ ρX and
f(xi, yi, xi+1) = yi+1 for i ≥ 0.

We say that a play σ according to strategy f is winning for the system, if
some configuration (x, y) ∈W appears infinitely often in σ. A strategy is winning
for the system if all plays according to the strategy are winning for the system.

13



Example 5 Consider a faculty playing the role of the environment and a
computer scientist being the system. The faculty offers coffee as a compen-
sation to the computer scientist if her results are good. For survival the
computer scientist is dependent on a steady stream of coffee. We can now
ask if there exists a winning strategy such that the computer scientist stays
alive.

We formulate this as a game G = (X,Y, x0, y0, ρX , ρY ,W ), where

X = {compensation} The domain of compensation is {coffee,none}
Y = {results} The domain of results is {good , bad}
x0 = {compensation 7→ none}
y0 = {results 7→ bad}
ρX = {(x, y, x′) ∈ X × Y × X | y(results) = good ⇒ x′(compensation) = coffee}

For notational convenience we shall write results as short hand for y(results),

and results ′ as a short hand for y′(results). Thus, we can also write ρX as

ρX = {(x, y, x′) ∈ X × Y × X | results = good ⇒ compensation ′ = coffee}
ρY = X × Y × Y (No restrictions on the choices of the system)

W = {(x, y) ∈ X × Y | compensation = coffee}

A winning strategy f for the computer scientist is f(x, y, x′) =
{results 7→ good}. As in any play, where the computer scientists constantly
produces good results, the faculty is required to compensate her with life
essential coffee. Thus, all plays according to strategy f are winning.

3.1 Controllability Check

The winning condition of a repeated reachability game G = (X,Y, x0, y0,
ρX , ρY ,W ) is a recurrence property stating that a configuration in W must
be reached infinitely often. This means that it is not enough to simply reach
a configuration in W . Instead, for the system to win the game we must ensure
that, given the transitions of the system, at any configuration of every play it
will eventually lead to another configuration in W .

As presented by Pnueli in [18] we use controllable predecessors and fixpoint
computation to determine whether or not the system can control the game to
an extent where it can force visits to a configuration in W infinitely often. The
controllable predecessors of a set of configurations P are denoted as 56P and
defined as the following.

56P = {(x, y) ∈ X×Y | ∀x′ [(x, y, x′) ∈ ρX ]⇒ ∃y′ [(x, y, y′) ∈ ρY ]∧(x′, y′) ∈ P}

14



Now we can use the controllable predecessors to find the configurations Z1

from where the system can force a visit a target configuration, regardless of
the choices made by the environment. These configurations can be expressed by
Z1 = W ∨56W ∨5656W ∨ . . .. This can also be written as a minimal fixpoint.

Z1 = µT.56T ∨W

In Z1 we now have the configurations where the system can force a visit to a
target configuration. This is not enough to win as the system must force a visit
to a target configuration infinitely often. For this we now construct Z2 as the
set of configurations from where the system can force a play to visit a target
configuration from Z1.

Z2 = µT.56T ∨ (W ∧56Z1)

Thus, from any configuration in Z2 the system can force a visit to a target
configuration twice, namely by going to a configuration (x, y) in W ∧56Z1 and

by the fact that (x, y) ∈ 56Z1, the system can force another visit to a target
configuration. We can now construct Z3, Z4 and so on as the sets of configura-
tions where the system can force 3, 4 and more visits to a target configuration,
respectively.

Z3 = µT.56T ∨ (W ∧56Z2)

Z4 = µT.56T ∨ (W ∧56Z3)

...

From this series of equations we observe that Z∞ can be expressed as a
maximal fixpoint, defined as follows.

Z∞ = νZ.µT.56T ∨ (W ∧56Z)

We now have Z∞ as the set of configurations where the system can force a
visit to a target configuration infinitely often. Thus, Z∞ is the set of winning
configurations, and checking for realizability amounts to checking if (x0, y0) ∈
Z∞ for the initial configuration (x0, y0).

A similar approach is presented in [15] and [17]. However, they allow both of
the transition relations to range over x′ and y′, i.e. ρX , ρY ⊂ X × Y × X × Y.
This complicates the computation of controllable predecessors and the added
expressiveness is not essential in the translation from LSCs.

15



Variable Domain Description

envmsg ΣENV ∪ {ε} The message being sent by the environment
in the current configuration, if any.

`O,i,B {0, . . . ,End(O)} ∪ {Reset,Fail} The location of the current cut on the in-
stance line for object O ∈ Inst in instance i
of basic chart B = (Inst ,End ,Msg).

gbuchi {0} ∪
{

(j, i)

∣∣∣∣1 ≤ j ≤ n+ 1,
1 ≤ i ≤ maxj

}
The winning condition that should infinitely
often be 0.

Table 1: Environment variables and their domains.

Variable Domain Description

sysmsg ΣSYS ∪ {ε} The message being sent by the system in the current con-
figuration, if any.

CurrentPlayer {env , sys} The player that can send a message in the next round.
Table 2: System variables and their domains.

4 Encoding Live Sequence Charts as Games

In this section we present an encoding of the LSC realizability game as a repeated
reachability game.

Let S = (L1, L2, . . . , Ln) be a LSC specification over the alphabet Σ and the
finite set of objects O and ENV and SYS denote the sets of objects controlled by
the environment and the system, respectively. We encode the LSC realizability
game as a repeated reachability game, GS = (X,Y, x0, y0, ρX , ρY ,W ), which is
defined throughout the rest of this section.

Here we shall use the following notation for the sub-components of LSC Lj
of the specification S = (L1, . . . , Lj , . . . , Ln).

Lj = (Prej ,Mainj ,Fj)

Prej = (InstPj ,EndPj ,MsgPj)

Mainj = (InstMj ,EndMj ,MsgMj)

The environment variables are shown in Table 1. The variable envmsg decides
in each turn which message the environment is sending. It takes the value ε
whenever the environment is not sending a message. This variable is controlled
by the environment. However, it is only allowed to send a message when the
environment is the current player.

Recall that in the LSC realizability game we are building an infinite word
w ∈ L(S). By Definitions 7 and 8 we have that the LSC Lj only considers
messages msgs(Lj). Now consider the projection of w on msgs(Lj) as follows.

w|msgs(Lj) = a1, a2, a3 . . .

To ensure that every decomposition of w satisfies Lj we initialize a copy of
Lj starting from the initial cut for the prechart at every symbol considered by
Lj . We then will have one copy starting at a1, another starting at a2, etc.

16



A variable `O,i,B is introduced for every object O in the i ’th instantiated
copy of the basic chart B to keep track of the current cut. The domain of these
variables is augmented with two special values: the value Reset, which signals to
other locations in the same copy of the basic chart to reset, and the value Fail
that is given if the chart is violated and by which there are no further transitions.

By construction we ensure that a copy resets and becomes available again,
once it concludes that the prechart is not satisfied or the main chart has finished.
If the main chart is violated, a variable of the cut entered the Fail location, and
the copy never finishes. Notice that the main chart is activated by the prechart,
and starts at its initial cut once the prechart is satisfied.

Since w is infinite, we can also expect w|msgs(Lj) to be infinite, thus, one
might conclude that we would need infinitely many copies of Lj . However, from
the initial cut to the maximal cut of the prechart and main chart, there are
at most |MsgPj | and |MsgMj | messages, respectively. Thus, a copy that is not
violated (none of its variables have been set to Fail) must reset after seeing
|MsgPj |+ |MsgMj | messages from the set msgs(Lj).

Now, if we reuse copies of Lj that were previously reset, we only need a finite
number of copies. Specifically, we say that we need copiesj number of copies,
where copiesj is defined as follows.

copiesj = |MsgPj |+ |MsgMj |

The variable gbuchi encodes a Büchi winning condition, such that it is 0
infinitely often if and only if (i) the environment is allowed to send a message
infinitely often, and (ii) any instantiated main chart eventually completes. This
variable either has the value of 0 or is a tuple (i, j), meaning that it is checking
whether copy i of LSC Lj has a non-initial cut in the main chart.

The system variables are shown in Table 2. The sysmsg variable is the sys-
tem’s counterpart of envmsg , and decides in each turn which message the system
is sending.

The variable CurrentPlayer states which player is allowed to send a message
in the next round of the game. This variable is controlled by the system, enabling
it to send multiple messages in response to a single environment message.

The initial configuration (x0, y0) of the repeated reachability game GS is given
below.

x0(`O,i,Mainj
) = 0 ∀O ∈ InstMj , 1 ≤ j ≤ n, 1 ≤ i ≤ copiesj

x0(`O,i,Prej
) = 0 ∀O ∈ InstPj , 1 ≤ j ≤ n, 1 ≤ i ≤ copiesj

x0(envmsg) = ε x0(gbuchi) = 0

y0(sysmsg) = ε y0(CurrentPlayer) = env

17



We now describe the transition relation for the system, ρY , of the re-
peated reachability game GS . For convenience we write CurrentPlayer instead
of y(CurrentPlayer) and CurrentPlayer ′ instead of y′(CurrentPlayer) (and sim-
ilarly for x).

CurrentPlayer ′ = {sys, env} (1)

sys ′msg =

{
ΣSYS ∪ {ε} if CurrentPlayer = sys

ε otherwise
(2)

We define that (x, y, y′) ∈ ρY if Equations (1) and (2) hold. If there are more
cases, the variable takes the value of the first case from the top for which the
condition holds. If there is a set of values, any of them are possible assignments of
the variable in y′. This semantics is rather similar to the one specified for SMV in
[16], and indeed it is trivial to express the rules that make up the corresponding
transition in SMV.

The rule in Equation (1) says that y′(CurrentPlayer) can take on the value
of either env or sys.

The other rule (Equation (2)) says that if y(CurrentPlayer) = sys,
then y′(sysmsg) can be any value from the set ΣSYS ∪ {ε}. If case one
(y(CurrentPlayer) = sys) does not hold, y′(sysmsg) takes on the value ε. Notice
how these rules do not impose many restrictions on the system, thus, leaving a
lot of freedom to the system when choosing a strategy.

Similarly, we shall describe the transition relation for the environment, ρX .
We assume the same notation and semantics for these equations as introduced
for the transition relation for the system.

Before we introduce the equations for ρX , we present two auxiliary functions,
next i,B(O, a) and see(m), and three auxiliary definitions activei,j , started i,j and
maymovei,j .

next i,B(O, a) = (`O,i,B = a− 1) ∨ (`O,i,B = Reset ∧ a = 1)

see(m) =

{
envmsg = m if m ∈ ΣENV

sysmsg = m otherwise

activei,j =
∧

O∈InstPj

`O,i,Prej = EndPj(O)

started i,j =
∨

O∈InstPj

`O,i,Prej 6= Reset ∧ `O,i,Prej 6= 0

maymovei,j = started i,j ∨
∧

1≤c<i

startedc,j

18



The auxiliary function next i,B(O, a) is true if the next location on the in-
stance line of O in the i’th copy of basic chart B is a. Notice that if a = 1, then
the location variable for O in the copy can be either 0 or Reset, thus, allowing
the reset location Reset to be treated as the initial location.

The auxiliary function see(m) is true if the message m is sent in the current
turn.

The auxiliary definition activei,j is true, if the location variables of the i ’th
copy of the prechart Prej for LSC Lj have advanced to the maximal cut, making
the i’th copy of the main chart Mainj of Lj active.

The definition started i,j is true if at least one location on an instance line in
copy i of the prechart of LSC Lj is different from 0 and Reset, meaning that it
has begun matching a word.

Finally, the definition maymovei,j tells us whether copy i of LSC Lj should
react on the next message. Since we only allow one copy to start matching a
word at the occurrence of any message, copy i should react on the message, if
it has already started matching the word or all copies before copy i of Lj have
begun matching words, meaning that this one is the next in line.

env ′msg =

{
ΣENV ∪ {ε} if CurrentPlayer = env

ε otherwise
(3)

`O1,i,Prej

′ =



0 if ∃O2 ∈ InstPj \ {O1}
s.t. `O2,i,Prej

6= Reset

and `O2,i,Prej
′ = Reset

0 if ∃O2 ∈ InstMj s.t. `O2,i,Mainj 6= Reset

and `O2,i,Mainj
′ = Reset

`O1,i,Prej
if activei,j

a if next i,Prej
(O1, a) ∧ next i,Prej

(O2, b)

∧ see(m) ∧maymovei,j
where (O1, a,m,O2, b) ∈ MsgPj
or (O2, b,m,O1, a) ∈ MsgPj

Reset if see(m)

where m ∈ msgs(Lj) ∩ΣO1,O2
, O2 ∈ O

0 if `O1,i,Prej
= Reset

`O1,i,Prej otherwise

(4)

19



`O1,i,Mainj

′ =



0 if ∃O2 ∈ InstMj \ {O1}
s.t. `O2,i,Mainj

6= Reset

and `O2,i,Mainj
′ = Reset

`O1,i,Mainj
if ¬activei,j

Reset if next i,Mainj
(O1,EndMj(O1))

∧ next i,Mainj
(O2,EndMj(O2)) ∧ see(m)

∧
∧

O∈InstMj\{O1,O2}

`O,i,Mainj = EndMj(O),

where (O1, a,m,O2, b) ∈ MsgMj ,

a = EndMj(O1), b = EndMj(O2)

a if next i,Mainj
(O1, a) ∧ next i,Mainj

(O2, b)

∧ see(m) where (O1, a,m,O2, b) ∈ MsgMj

or (O2, b,m,O1, a) ∈ MsgMj

Fail if see(m)

where m ∈ msgs(Lj) ∩ΣO1,O2
, O2 ∈ O

`O1,i,Mainj
otherwise

(5)

gbuchi ′ =



(1, 1) if gbuchi = 0

0 if CurrentPlayer = env

∧ gbuchi = (copiesn + 1, n)

(1, j + 1) if ¬activei,j ∧ gbuchi = (copiesj , j)

(i+ 1, j) if ¬activei,j ∧ gbuchi = (i, j)

gbuchi otherwise

(6)

We can now move on with defining the transition relation of the environment.
First of all, Equation (3) allows the environment to send messages whenever it
is the current player.

All the other environment variables and rules are deterministic as they keep
track of the current cuts and how they advance through the copies of the charts,
in order to determine if the winning condition of the LSC realizability game is
satisfied.

Equation (4) specifies how the cut in the i’th copy of the prechart Prej of
LSC Lj advances on the instance line of O1. The first two cases state that the
current location variable is set to the value 0 if another location variable in the
i’th copy of LSC Lj goes to the reset location Reset.

The introduction of the location Reset is due to this condition. If 0 were
used instead, the location variables of the chart copy would agree on resetting
each turn, and thus, deviate from the semantics of LSCs. Hence, the value Reset
signals to other location variables in the same chart copy that they should go to
0. As such, Reset has the same meaning as 0 when considering the next message
to react upon.

20



The third case says that we do not change the value of `O1,i,Prej
if the

corresponding main chart copy of the LSC is active, unless specified otherwise
by case 1 or 2.

The next case says that O1 advances to location a if this copy is supposed
to react on the message and there is a message exchange at location a on the
instance line of O1 in the i’th copy of Prej , where both the message and the
next locations of sender and receiver match those of the message exchange taking
place in the current turn.

If none of the cases above were satisfied, and we see a message used in LSC
Lj which should have been handled on O1, then the fifth case says that this copy
of the prechart must be reset.

The sixth case is reached if none of the cases above were fulfilled. It changes
the value from Reset to 0, ensuring that this instance line can again reset the
location of the other instance lines in the same copy of the chart by going to
Reset. This is relevant when some locations of other instance lines in the same
copy of the chart are different from 0 and a message used in the chart that is
not allowed at the current location of the instance line of O1, is seen.

Finally, if no condition was fulfilled, the last case returns the old value of the
variable.

Equation (5) specifies how the cut in the i’th copy of the main chart Mainj
of LSC Lj advances on the instance line of O1. The cases are quite similar to
the cases for the location variable of the prechart (Equation (4)). However, the
case that would reset if we see an unhandled message, now goes to the special
location Fail, emphasizing that the LSC has been violated.

Finally, we have the winning condition gbuchi in Equation (6). This variable
will infinitely often be assigned the value 0 if and only if every copy of every
chart is inactive (either completed or never activated) infinitely often, and the
environment is the current player infinitely often. Therefore the variable iterates
through all copies of all charts to check if they are inactive and finally checks if
the environment is the current player.

Summing all this up, we say that (x, y, x′) ∈ ρX if Equations (3), (4), (5)
and (6) hold.

Using the variable gbuchi , we can define the set of target configurations W
for the repeated reachability game, GS , as follows.

W = {(x, y) | x(gbuchi) = 0}

We now make the following claim of correctness.

Claim. A specification S is realizable if and only if there is a winning strategy
f for the repeated reachability game GS .

Let S = {L1, . . . , Ln} be a specification. From the definition of the language
of a specification (Definition 8) we know that a word w is in the language L(S)
if w ∈ L(L) for all L ∈ S.

Let Lj = {Prej ,Mainj ,Fj} be an LSC, where Lj ∈ S. The location variables
for LSC Lj in the game keep track of the word v = w|msgs(Lj) = a1a2 . . . given

21



so far, and each possible substring v̂ of the word is considered as there is a copy
of the chart ready to match from the start symbol of v̂.

Now we are interested in determining if any substring v̂ of v contains a
sequence of symbols that forms a word vPrej ∈ L(Prej). If there is a word vPre ,
such that there it not a following sequence of relevant symbols that constitutes
a word vMainj

∈ L(Mainj), at least one location will change to the location Fail
in some copy i of Mainj . As such, this copy will never be able to become inactive
again. Thus, it is not the case that gbuchi = 0 infinitely often, because it will be
stuck at the value (i, j), and the system will lose the game.

Conversely, if the word w is in the language of the specification L(S), then
the location variables for all copies of the LSCs will do either of the following.
They may never enter the main chart or each time they do, they will reach the
maximal cut of the chart, thus allowing gbuchi to be 0 infinitely often.

22



5 LiveSC - A Live Sequence Chart Editor

To complement the subset of LSCs formally described in this report, we have im-
plemented a web application called LiveSC for drawing and checking realizability
of LSCs. This web applications runs in most modern browsers1. LiveSC is loaded
with examples and you can test it at http://jopsen.github.com/LiveSC, no
installation required (except Java-plugin).

LiveSC is implemented in HTML5 using CoffeeScript and a number of
Javascript libraries. For more information visit https://github.com/jopsen/

LiveSC.
The realizability and synthesis engine is implemented as a Java applet using

the JTLV library [20]. This library enables us to load SMV transition system as
BDDs (Binary Decision Diagrams). Then using BDD operations we can compute
controllable predecessors and the winning configurations Z∞ using maximum
and minimum fixpoints as described in Section 3.1.

Fig. 4: A screenshot of the LiveSC tool.

Fig. 4 shows a screenshot of LiveSC working on one of the built-in examples.
The tool has three main graphical elements: a toolbar in the top, a menu list on
the left and a workspace on the right. The menu list contains the names of the
LSCs that make up the specification currently open in the editor, while the LSC

1 We recommend Firefox 12, Google Chrome 20 or later.

23

http://jopsen.github.com/LiveSC
https://github.com/jopsen/LiveSC
https://github.com/jopsen/LiveSC


the user is currently working on is shown in the workspace area. Here the user
can add, rename, move or delete messages and instance lines.

The toolbar allows the user to create, load or save specifications. Moreover,
it allows for the creation of new elements such as charts, messages and objects
in a drag-and-drop fashion.

It is possible to specify that the whole main chart as false, i.e. its language is
empty. In this way the sequence of messages seen in the prechart is forbidden, as
any run satisfying the prechart of the LSC will not be able to satisfy the main
chart.

According to the semantics of LSCs given in Section 2 a chart with empty
language can be created by crossing two synchronous messages, a setup that is
not strictly prohibited by the definition of basic charts in order to facilitate this
feature.

For the sake of synthesis the toolbar also has a button allowing to change
the objects in a specification from system to environment and vice versa. The
highlighted button allows the user to synthesize a strategy. However, at this
point LiveSC does not have any method for exporting the synthesized strategy,
so this will just synthesize a strategy and report the number of nodes in the
BDD representation of the transition system.

5.1 Bank Account Example

In this section we shall consider a simple example involving a bank that demon-
strates how the tool works.

Fig. 5 displays two scenarios for our bank example. This specification consists
of a bank controlled by the system and a customer controlled by the environment.
Scenario 5a involves the customer entering the bank, making a deposit and
getting a receipt. Essentially, the scenario shows that if the customer enters the
bank and makes a deposit he gets a receipt. Scenario 5b involves a withdrawal
instead.

Bank Customer

enter

deposit

getReceipt

(a) Scenario describing a deposit.

Bank Customer

enter

withdraw

getReceipt

(b) Scenario describing a withdrawal.

Fig. 5: Two common bank scenarios.

Now if the customer were to enter the bank, and the bank decided to issue
a receipt immediately, the bank would not be forced to issue a receipt when the
customer makes a deposit. This is due to the fact that the occurrence of the
message ”getReceipt” in the prechart of scenario 5a resets the prechart.

24



To further regulate the behavior of the bank, we introduce scenario 6a, which
states that a customer cannot enter the bank and get a receipt. The cross drawn
onto the main chart signifies that it is false. Hence, if the prechart ever completes,
the main chart will cause the system to fail.

Bank Customer

enter

getReceipt

(a) Forbids receipts to customers.

Bank Customer

enter

getReceipt

withdraw

deposit

(b) Forbids receipts to customers with
any other actions.

Fig. 6: Two different attempts to regulate the bank.

However, with scenario 6a under consideration the system becomes unreal-
izable. As a customer who decides to enter and then makes a deposit will by
scenario 5a be granted a receipt in violation of scenario 6a.

This is because scenario 6a does not consider the message ”deposit”. If we
extend 6a to become scenario 6b the specification will again be realizable. This
is because the prechart of 6b is reset, whenever a deposit or withdrawal is made.

In the example gallery for LiveSC2 you will find this example in both its
unrealizable version with scenario 6a and in its realizable version with scenario
6b. The realizability check for these examples can be done in a Java enabled
browser.

The synthesized transition system, for the bank example with scenario 6b, has
127 422 BDD nodes in its representation. If for instance the withdraw scenario
is excluded the BDD will have 34 340 nodes. In comparison the synthesized
transition system for a simple system with only one chart, two objects and two
messages back and forth (one in the prechart and the other in the main chart)
contains 3 318 BDD nodes. An example of such a system could simply be the
deposit scenario in Fig. 5, without the deposit message.

These preliminary numbers indicate that the size of the transition system
quickly blows up as more charts and messages are added to a system.

2 Try it at http://jopsen.github.com/LiveSC

25

http://jopsen.github.com/LiveSC


6 Conclusion

We have given a syntax and semantics for a subset of Live Sequence Charts
(LSCs). This allowed us to define the problem of LSC realizability from a game-
theoretic perspective, where the LSC message exchanges and their ordering may
be expressed through transition rules.

We have described this general problem as a LSC realizability game, which
in turn is translated into a repeated reachability game, also described here.
Using this we can now algorithmically determine whether a LSC specification is
realizable by computing a winning strategy for the repeated reachability game.

Finally, the algorithm has been implemented in our tool called LiveSC, which
is publicly available. This allows the user to create a system specification con-
sisting of LSCs and determine whether or not the specification is realizable.

6.1 Future Work

The subset of LSCs presented here, also encoded in the tool, only permits re-
stricted kinds of constructs. Other constructs can be introduced while still keep-
ing the problem decidable. These include, but are not limited to, existential
charts, finite domain variables, conditions and invariants on messages or vari-
ables, scopes etc.

It is of interest to extend the tool so it is possible to provide a counter-
example that tells the user which charts and the sequence of messages that
cause a specification to be unrealizable. Hence, making it easier to locate and
understand the problem, or fix the specification if possible.

The algorithms used for translating the LSC realizability game and solving
the repeated reachability game have not yet been analyzed in terms of complex-
ity. Moreover, it is worth investigating how to optimize the algorithm used by
the tool and reduce the size of the transition system of the synthesized controller,
which in turn may yield faster execution and cause more complex specifications
to become tractable.

It is also interesting to attempt reordering the variables of the underlying
BDDs and optimize the translation of the LSC realizability game to the repeated
reachability game, such that the state space and transition systems are smaller
and easier to analyze.

Our current translation has a high focus on simplicity as opposed to size.
This is reflected by the fact that each location variable for an instance has a
fail state, whilst with complicated conditions it would be sufficient to have one
global variable with a fail state for all charts.

Finally, a formal proof of correctness for the translation is required to show
that the solution to the repeated reachability game matches the defined LSC
semantics.

26



References

1. Yves Bontemps. Relating inter-agent and intra-agent specifications : the case of
life sequence charts. PhD thesis, 2005,
dial.academielouvain.be/vital/access/services/Download/boreal:

4222/PDF_01.
2. Yves Bontemps, Patrick Heymans, and Pierre-Yves Schobbens. From live

sequence charts to state machines and back: A guided tour. IEEE Trans.
Software Eng., 31(12):999–1014, 2005.

3. Yves Bontemps and Pierre-Yves Schobbens. The complexity of live sequence
charts. In FoSSaCS, pages 364–378, 2005.

4. Yves Bontemps, Pierre-Yves Schobbens, and Christof Löding. Synthesis of open
reactive systems from scenario-based specifications. Fundam. Inform.,
62(2):139–169, 2004.

5. Werner Damm and David Harel. LSCs: Breathing life into message sequence
charts. In Paolo Ciancarini, Alessandro Fantechi, and Roberto Gorrieri, editors,
FMOODS, volume 139 of IFIP Conference Proceedings. Kluwer, 1999.

6. Werner Damm, Tobe Toben, and Bernd Westphal. On the expressive power of
live sequence charts. In Program Analysis and Compilation, pages 225–246, 2006.

7. David Harel, Amir Kantor, and Shahar Maoz. On the power of play-out for
scenario-based programs. In Dennis Dams, Ulrich Hannemann, and Martin
Steffen, editors, Concurrency, Compositionality, and Correctness, pages 207–220.
Springer-Verlag, Berlin, Heidelberg, 2010.

8. David Harel and Hillel Kugler. Synthesizing state-based object systems from LSC
specifications. In Revised Papers from the 5th International Conference on
Implementation and Application of Automata, CIAA ’00, pages 1–33, London,
UK, UK, 2001. Springer-Verlag.

9. David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli. Smart play-out of
behavioral requirements. In Mark Aagaard and John W. O’Leary, editors,
FMCAD, volume 2517 of Lecture Notes in Computer Science, pages 378–398.
Springer, 2002.

10. David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: generating
statechart models from scenario-based requirements. In Hans-Jörg Kreowski, Ugo
Montanari, Fernando Orejas, Grzegorz Rozenberg, and Gabriele Taentzer,
editors, Formal Methods in Software and Systems Modeling, pages 309–324.
Springer-Verlag, Berlin, Heidelberg, 2005.

11. David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming
Using LSC’s and the Play-Engine. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2003.

12. David Harel, Assaf Marron, and Gera Weiss. Programming coordinated behavior
in java. In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 250–274, Berlin, Heidelberg, 2010.
Springer-Verlag.

13. Jochen Klose, Tobe Toben, Bernd Westphal, and Hartmut Wittke. Check it out:
on the efficient formal verification of live sequence charts. In Proceedings of the
18th international conference on Computer Aided Verification, CAV’06, pages
219–233, Berlin, Heidelberg, 2006. Springer-Verlag.

14. Jochen Klose and Hartmut Wittke. An automata based interpretation of live
sequence charts. In Proceedings of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2001, pages
512–527, London, UK, UK, 2001. Springer-Verlag.

27

dial.academielouvain.be/vital/access/services/Download/boreal:4222/PDF_01
dial.academielouvain.be/vital/access/services/Download/boreal:4222/PDF_01


15. Hillel Kugler, Cory Plock, and Amir Pnueli. Controller synthesis from LSC
requirements. In FASE, pages 79–93, 2009.

16. K. L. McMillan. The SMV System, 1992-2000,
http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.ps.

17. Cory Plock. Synthesizing executable programs from requirements. PhD thesis,
New York, NY, USA, 2008.

18. Amir Pnueli. Extracting controllers for timed automata. Technical report, 2005,
http://laser.inf.ethz.ch/2005/reports/extracting.pdf.

19. Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to
synthesize. In FOCS, pages 746–757, 1990.

20. Amir Pnueli, Yaniv Sa’ar, and Lenore Zuck. JTLV - a framework for developing
verification algorithms. 2010.

21. Guy Wiener, Gera Weiss, and Assaf Marron. Coordinating and visualizing
independent behaviors in erlang. In Proceedings of the 9th ACM SIGPLAN
workshop on Erlang, Erlang ’10, pages 13–22, New York, NY, USA, 2010. ACM.

28

http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.ps
http://laser.inf.ethz.ch/2005/reports/extracting.pdf

	Realizability Checking of Live Sequence Charts

