
The Concurrent Real-Time Task Model

Daniel Ejsing-Duun, Lisa Fontani, Jonas Finnemann Jensen, Jacob Haubach
Smedeg̊ard, Lars Kærlund Østergaard

Department of Computer Science, Aalborg University, Denmark

Abstract. The Digraph Real-time Task model (DRT) was recently in-
troduced as a new modeling formalism for uniprocessor schedulability
analysis of real-time systems with sporadic jobs. We extend the syntac-
tical expressiveness of the DRT model by introducing the Concurrent
Real-time Task model (CRT), where parallel constructions are allowed
within tasks. We show how the CRT model can be expressed through a
grammar and then demonstrate how the concept of the demand bound
function and utilization may be adapted to this formalism. Lastly, we
argue that the pseudo-polynomial feasibility results for the DRT model
also apply to this model and show how the demand bound function and
utilization may be computed by the means of path abstraction.

1 Introduction

Real-time systems are widely used in time critical application areas, such as em-
bedded automative electronics, air traffic control systems, networked systems,
etc. Such systems run various tasks that collect information and create events
that must be handled in a timely manner. Hence, the response times of these
systems must be guaranteed within strict time constraints. Every such task re-
quires computation time and data resources to complete, however, with a limited
amount of resources it becomes a challenge to order the tasks in such a way that
each one satisfies its timing constraints.

Scheduling of real-time systems has been a longstanding research area on its
own. Within this area, a number of modeling formalisms have been developed
to model and analyze real-time systems. Initially the main focus was on peri-
odic task systems, where in 1973 Liu and Layland [6] formulated a necessary
and sufficient criterion for uniprocessor feasibility and a utilization bound that
required knowledge of execution times and unique periods of each task. Later
these results were improved in other works that accounted for sporadic tasks
[9] and moved onto multi-processor platforms [8], both of which resulted in an
increase in the complexity from linear time to pseudo-polynomial. Later, task
automata [3] have been proposed, allowing a higher level of expressiveness than
the previous models at the price of higher complexity and undecidability in some
cases.

In 2011 the Digraph Real-time Task model (DRT) was introduced by Stigge,
Ekberg, Guan and Wang [12] for determining the feasibility of uniprocessor
systems. This model is used for the modeling of sporadic tasks and offers a high

degree of expressiveness, while maintaining pseudo-polynomial complexity. The
DRT modeling formalism uses a simplified set of assumptions to construct an
abstract model of a system, while keeping the schedulability test tractable in
practice. It requires that a program can be modeled as one or more independent
tasks running concurrently. Each task can be modeled with a dependency graph
of jobs containing a control flow of either serial or nondeterministic compositions.
The model abstracts away from specific functionality of the jobs of each task and
assumes that they adhere to a specific set of properties such as limited support
for shared resources. A job is then an abstraction over a piece of code, consisting
of a worst-case execution time and a deadline. The formal definition of the model
is given in Appendix B.1.

j1

〈1, 20〉

30

j2

〈6, 25〉

j3

〈6, 25〉

40

j4 〈2, 25〉

j5 〈4, 25〉

(a) Example of a Concurrent Real-time Task
system consisting of only one task. Nodes in
the graph represent jobs, each labelled with
an execution time and deadline. The edges
in the graph represent dependencies between
jobs and are labelled with minimum inter-
release time where applicable.

j1

〈1, 20〉

j2

〈6, 25〉

j3

〈6, 25〉

30 40

j1〈1, 20〉

j4 〈2, 25〉

j5 〈4, 25〉

30

30

(b) Example of a DRT system
with two tasks. Nodes in the
graph represent jobs, each la-
belled with an execution time
and deadline. The edges in the
graph represent dependencies be-
tween jobs and are labelled
with minimum inter-release time
where applicable.

Fig. 1: CRT and DRT models for the environmental sensor system.

We extend the DRT model by introducing the Concurrent Real-time Task
model (CRT), which allows parallel job compositions within tasks that can be
used to readily model concurrent systems with explicit synchronization on a
uniprocessor. The motivation for this extension can be demonstrated through
the following example, shown as a graph in Fig. 1a. Consider an environmental
sensor which is activated for high and low temperature values. When a value
within a specific range is observed, some preprocessing is done to determine
the circumstances (j1), after which, in parallel, data is sent to an off-site data
store (j2), leading to an acknowledgement of receival (j3), while a cooling (j4)
or heating (j5) device is activated. In addition to the constructions allowed in

2

the DRT model, this model allows parallel job composition and is therefore at
least as expressive as the DRT, as shown in Appendix B.2.

In the original DRT model we cannot model parallel jobs within a task.
Consequently, it is necessary to either duplicate the initialization code into two
tasks, as shown in Fig. 1b, or create a third parallel task that contains the
initialization code. However, both could cause an otherwise feasible system to
no longer be feasible, if the initialization code is not able to run in parallel with
the other tasks. By using our proposed parallel job construction we can model
these three inter-dependent tasks as a single task that correctly encodes their
ordering.

1.1 Related work

There are two main branches of focus in the schedulability reasearch: unipro-
cessor systems and multiprocessor systems. Liu and Leyland [6] introduced a
periodic model for the feasibility analysis of uniprocessor real-time systems in
1973. As previously mentioned this work has since been extended to feasibility
analysis of sporadic task models [9] and the DRT model.

Stigge, Ekberg, Guan and Wang have shown that the feasibility problem for
an extension of the DRT model, EDRT [11], which contains inter-release time
constraints between non-connected jobs in a task, remains pseudo-polynomial
for a bounded number of constraints and is strongly coNP-hard for an arbitrary
number of constraints.

The other branch of interest is that of multiprocessor scheduling. Algorithms
for multiprocessor scheduling are divided into two approaches; partitioned and
global. The partitioned algorithms assign tasks or jobs to a fixed processor,
whereas global algorithms allow arbitrary migration of tasks or jobs between
the processors. The general preemptive task allocation problem for multiproces-
sors is known to be NP-complete [4,2]. Moreover, no priority-driven scheduling
algorithm, such as Earliest Deadline First (EDF), is known to be optimal for
scheduling tasks on multiprocessors [7].

Our focus is strictly that of uniprocessor scheduling and hence we will not
consider multiprocessors for the remainder of this paper.

Outline: This paper is structured as follows. The next section covers back-
ground theory such as jobs, deadlines, worst case execution time and the concept
of feasibility. Section 3 presents the Concurrent Real-time Task (CRT) model
with Section 4 covering feasibility analysis for CRT models. In Section 5 we
present rules for calculating the utilization of CRT systems. Section 6 discusses
the existence of an upper bound for the time for which schedule violations may
occur in a system. The calculation of the demand bound function for CRT mod-
els is demonstrated in Section 7. Finally, Section 8 provides conclusions and
Section 9 gives an overview of future work directions.

3

2 Background

In this paper we consider the problem of scheduling jobs in a real-time setting. A
job is defined as a segment of code and is the smallest unit of a program that we
shall consider. Every job has an associated execution time and deadline, and may
be dependent on other jobs or events in a system. A job can only be released
after all its dependencies have been fulfilled. A job that has been released is
ready to begin execution and is waiting to be scheduled.

In this section we shall introduce basic concepts relating to jobs, present well-
established categories into which jobs can be classified and explain the scheduling
principle that the CRT model relies on.

2.1 Execution Time of a Job

The execution time of a job j, denoted by e(j), is the amount of time that the
job requires to complete its work on a single processor. The execution time may
typically vary, depending on the architecture the program is running on, input
data, current state of the cache, data locality, etc. Therefore it is impossible
to accurately estimate the actual time any job will need to finish executing.
Nevertheless, it is possible to approximate the execution time of a job by using
either the best- or worst-case execution time (BCET/WCET)[7].

BCET is the minimum execution time required by a job, while WCET is
the maximum execution time a job may need. Values for these two metrics are
obtained through analysis, since through testing the actual best- or worst-case
may never be observed. It is difficult to establish an accurate estimate of either
BCET or WCET, since this requires intricate knowledge of the hardware and
architecture used. Therefore, in practice, the values found are an under- and
over-estimation, respectively.

2.2 Deadline of a Job

Since we are concerned with real-time systems, every job j can, besides an ex-
ecution time, also have an associated deadline, d(j). This deadline is relative
to the release of the job and states how much time is allowed to pass after its
release, before it must be finished.

Depending on the system this deadline can either be a hard or a soft deadline.
The difference between these two types of deadlines refers to how useful the result
is in case the deadline is violated. In case of a hard deadline, the execution has
no value after the deadline, while the result of a job with a soft deadline still has
some value depending on how late it is [7], i.e. if a few jobs with soft deadlines
do not complete within their time constraints it is not critical to the overall
performance or integrity of the system.

4

2.3 Minimum Inter-Release Time

A job may be dependent on other jobs in a system. Any two related jobs may
have a minimum inter-release time of x ∈ N≥0 between them. This means that
at least x time units must pass between the release of the first and the second
job. Aside from this we have no way of predicting when the actual release of the
job will occur.

Jobs with inter-release times between them can be organized into tasks. In
turn, these independent tasks can then be grouped to form a system.

2.4 Categories of Jobs

In real-time scheduling there are generally three different types of jobs [7]: pe-
riodic jobs, aperiodic jobs and sporadic jobs. The difference lies in what can be
asserted about their release times and deadlines.

Periodic jobs are continuously released exactly after a certain time interval
since the last release has passed and have no dependencies to other jobs in a
system. The deadlines associated with periodic jobs may be both hard or soft.

Aperiodic jobs, on the other hand, do not have a precise time for when
they must be released based on previous releases of the job. An aperiodic job
can be dependent on the release of other jobs. Minimum inter-release times are
therefore used to reflect these dependencies in a task model. Aperiodic jobs may
have either soft deadlines or no deadline. Thus, aperiodic jobs describe jobs that
are not released at specific times and are not critical for the system.

Sporadic jobs have no fixed release time either and use minimum inter-release
times to express dependencies. Sporadic jobs usually have hard deadlines and
thereby may represent time critical jobs that are released by events.

2.5 Feasibility

A task system can produce different release scenarios depending on the tasks
present in the system, the jobs in each task and the dependencies between these.
A release scenario contains all the jobs released by a system with their associated
release times, execution times and absolute deadlines.

A task system is said to be uniprocessor feasible if all release scenarios gener-
ated by the system can be executed on a preemptive uniprocessor platform such
that no job misses its deadline.

When testing for feasibility we only use the WCET, since, if a set of jobs is
feasible with respect to their WCET, the schedule for its worst-case execution
will surely also be a safe schedule for all other executions, if all jobs are released
at the same time, but execute for shorter periods.

The challenge when using WCET for feasibility analysis, aside from finding
a realistic estimate, is that the execution time of the jobs in reality may be much
smaller, meaning that a schedule deemed infeasible by a WCET feasibility anal-
ysis might actually be able to execute and finish without any deadline violation.
The best way to minimize this problem is to optimize the WCET analysis.

5

2.6 Earliest Deadline First Scheduling

There are several well-known scheduling strategies that work under different as-
sumptions and have a varying performance, depending on the type of system.
One of these strategies is called Earliest Deadline First (EDF) scheduling, which
assumes preemptable jobs. The principle of EDF is to always allow the released
job with the smallest absolute deadline to execute on the processor. This means
that any new job can preempt the current job from running and that the proces-
sor will never be idle while there are any released jobs. Since jobs are assumed to
be preemptable, challenges may arise if two jobs under execution need to access
the same resource. Other strategies and variations of EDF take this aspect into
consideration.

Previous research has shown that EDF is optimal for a uniprocessor platform
where preemption is allowed and context-switching is assumed to take negligible
time [7]. A scheduling algorithm is optimal if, for any release scenario of a feasible
system, it always produces a schedule such that all jobs meet their deadline.
Because of this, we can rely on EDF as scheduling strategy whenever we find a
uniprocessor feasible task system.

In this paper we limit our scope to scheduling sporadic jobs with hard dead-
lines, and focus on determining whether a task system is feasible. In the next
section we shall introduce the Concurrent Real-time Task model, including its
syntax and semantics.

3 Concurrent Real-Time Task Model

The Concurrent Real-time Task model (CRT), which is an extension of the DRT
model is, likewise, composed of arbitrarily many independent tasks running in
parallel. Each task is a set of related jobs that encodes the possible control flow
of a program. Nondeterministic choices between different execution paths or
subtasks running in parallel can be expressed. Note that subtasks are restricted
to not include any cycles.

Definition 1 (Concurrent Real-Time Task System). A Concurrent Real-
time Task system (CRT) S is a tuple S = (τ, J, e, d), where

– J is a finite set of jobs,
– e : J → N is a mapping from jobs to worst-case execution times,
– d : J → N is a mapping from jobs to relative deadlines and
– τ is a configuration defined by the following grammar.

Configuration: τ ::= T | T || τ
Task: T ::= j | T1〈x〉T2 | S1 || S2 | T1+T2 | Tω

Subtask: S ::= j | S1〈x〉S2 | S1 || S2 | S1+S2

Here j ∈ J is a job and x ∈ N.
We consider only well-formed configurations τ , where any job j ∈ J occurs
at most once. Moreover, CRTτ , CRTT and CRTS denote the infinite sets
containing all legal configurations, tasks and subtasks, respectively.

6

Here T1〈x〉T2 is the sequential composition of tasks T1 and T2 with inter-release
time x, T1+T2 is the choice between tasks T1 and T2, S1 || S2 is the parallel
composition of subtasks S1 and S2, and Tω is one or more iterations of T .

Example 1 The model represented in Fig. 1a can be expressed as the con-
figuration τe consisting of the task Te = (j1〈30〉((j2〈40〉j3) || (j4 +j5)))ω.
The CRT system is then given by S = (τe, Je, e, d), where

Je = {j1, j2, j3, j4, j5}
e(j1) =1 e(j2) =4 e(j3) =6 e(j4) =2 e(j5) =4

d(j1) =20 d(j2) =25 d(j3) =25 d(j4) =25 d(j5) =25

For any CRT, the sequences of jobs that may be generated can be expressed
through the notion of execution paths. An execution path carries information
about the inter-release time between jobs and may contain parallel compositions.
It does, however, not contain iterations nor choices, as these are replaced through
system unfolding.

Definition 2 (Execution Path). An execution path is a finite sequence of jobs
that may be generated by a CRT. It is defined by the following grammar.

p ::= j | p1 || p2 | p1〈x〉p2

Given a CRT S = (τ, J, e, d), the (possibly infinite) set of execution paths
through the whole expression τ is denoted Paths (τ) and defined in the rules
below.

Paths (j) = {j} (1)

Paths (T1〈x〉T2) = {p1〈x〉p2 | p1 ∈ Paths (T1) , p2 ∈ Paths (T2)} (2)

Paths (T1 || T2) = {p1 || p2 | p1 ∈ Paths (T1) , p2 ∈ Paths (T2)} (3)

Paths (T1+T2) = Paths (T1) ∪ Paths (T2) (4)

Paths (Tω) = Paths (T) ∪ {p1〈0〉p2 | p1 ∈ Paths (T) , p2 ∈ Paths (Tω)}(5)

The base case of an execution path through a job is just the job itself (Equa-
tion 1). In a sequential composition an execution path through the first task is
followed by the inter-release time and an execution path through the second task
(Equation 2). The execution path that goes through a parallel composition is
given by the parallel composition of an execution path for the first subtask and
an execution path for the second subtask (Equation 3). For any choice in T the
execution path may go through one of the components, thus removing nonde-
terminism (Equation 4). When a Tω subterm is present, an execution path may
repeat T one or more times (Equation 5).

7

An execution may not be limited to execution paths through the entire task.
For this reason we must be able to refer to all kinds of execution paths in the
system, rather than limiting us to complete paths. Therefore, we will now define
the prefix and suffix of paths.

The prefix of an execution path p is the set including any execution path
that starts where p starts, but may end with any job of p. To construct these we
define the prefix operation for execution paths as follows.

prefix (j) = {j}
prefix (p1〈x〉p2) = prefix (p1) ∪ {p1〈x〉pf2 | p

f
2 ∈ prefix (p2)} (6)

prefix (p1 || p2) = {pf1 || p
f
2 | p

f
1 ∈ prefix (p1) , pf2 ∈ prefix (p2)} (7)

∪prefix (p1) ∪ prefix (p2)

To define the prefix of an execution path we note that the prefix of a se-
quential composition (Equation 6) may be composed of a prefix of the execution
path up until the inter-release term of the expression, which consequently is not
included in the resulting execution path. Alternatively, we may need to represent
the entire execution path that occurs before the inter-release term and concate-
nate it with a prefix of the execution path that follows the inter-release time.
In a parallel composition (Equation 7) there is no relation between the parallel
branches and as such the prefix of a parallel composition can be either the prefix
of either of the branches or the parallel composition of any prefix of any of the
execution paths in both branches.

The suffix of an execution path p is the set including any execution path that
ends where p does, but may start with any job of p. To construct these we define
the suffix operation on execution paths as follows.

suffix (j) = {j}
suffix (p1〈x〉p2) = suffix (p2) ∪ {pf1 〈x〉p2 | p

f
1 ∈ suffix (p1)}

suffix (p1 || p2) = {pf1 || p
f
2 | p

f
1 ∈ suffix (p1) , pf2 ∈ suffix (p2)}

∪ suffix (p1) ∪ suffix (p2)

Symmetrical arguments to the ones for the prefix operation hold for the suffix
operation.

For a configuration τ we define AllPaths (τ) to be the set containing the
prefixes of all suffixes of all execution paths going through the whole system.
Hence, this set includes all possible execution paths for τ .

AllPaths (τ) = {p | p ∈ prefix (p′) , p′ ∈ suffix (p′′) , p′′ ∈ Paths (τ)}

8

Example 2 Here we present examples of execution paths for the task Te
in Fig. 1a, previously described in Example 1.

An example of a path through Te is given by:
p1 = j1〈30〉((j2〈40〉j3) || (j5))〈0〉j1〈30〉((j2〈40〉j3) || (j4)).

Some of the possible prefixes of p1 are:
j1〈30〉j2, j1〈30〉((j2〈40〉j3) || (j5)), j1〈30〉((j2〈40〉j3) || (j5))〈0〉j1〈30〉j4, j1.

Some of the possible suffixes of p1 are:
j2〈40〉j3, j4, j5〈0〉j1〈30〉((j2〈40〉j3) || (j4)), j3.

Finally, we can consider an execution path inside Te that is not included
in any of the other categories. For instance, the execution path consisting
of a single job p = j2.

3.1 Semantics

The semantics of a CRT S = (τ, J, e, d) describes how jobs can be released in a
system. A job release of j ∈ J is described by a release tuple 〈r, e, d〉, where r
denotes the absolute time at which the job was released, e = e(j) is the execution
time of the job and d = r + d(j) is the absolute deadline for the job. We define
an auxiliary function, which given an offset value y, recomputes release times
and deadlines of release tuples for a release scenario σ.

offset (σ, y) = {〈r + y, e, d+ y〉 | 〈r, e, d〉 ∈ σ}

With this we can now define the collection of job releases for a given execution
path.

Definition 3 (Release Scenario). Let S = (τ, J, e, d) be a CRT. A release
scenario σ of an execution path p is a multiset of release tuples for the jobs in
p, where either of the following holds

a) p = j and σ = {〈c, e(j), d(j) + c〉} for some c ∈ R≥0

If σ1 is a release scenario for p1 and σ2 is a release scenario for p2, then

b) p = p1〈x〉p2 and σ = σ1
⊎

offset (σ2, x+ max{r | 〈r, e, d〉 ∈ σ1})
c) p = p1 || p2 and σ = σ1

⊎
σ2

Here
⊎

is the multiset union [13] and c denotes an arbitrary delay on the
release of a job.

9

We define the collection of release scenarios below.

Definition 4 (Set of Release Scenarios). Given an execution path p, we
define RS (p) as the infinite set of release scenarios for p.

Note that when a parallel execution of a task is finished, the definition re-
quires that all the jobs within the parallel composition, excluding those elim-
inated by choices, have been released before the next job in the task can be
released.
Also, it is defined that for an execution path p and any release scenario
σ ∈ RS (p), it holds that σ contains exactly one release tuple for every occurrence
of a job in p.

Example 3 A subset of the release scenarios for the execution path p =
j1〈30〉j2 of the model in Fig. 1a is given by:

RS (p) =
{
{〈0, 1, 20〉, 〈30, 4, 55〉}, {〈2.5, 1, 22.5〉, 〈37.3, 4, 62.3〉}, . . .

}

Given a release scenario σ ∈ RS (p) for some execution path p, the execution
time of σ, E (σ), denotes the total execution time required by job releases in
σ. It is given by the sum of the execution times of all release tuples in the
multiset (Equation 8). The inter-release time of σ, I (σ), denotes the time that
passes between the first release and the last release in the multiset (Equation 9).
Lastly, the deadline of σ, D (σ), denotes the time by which all jobs in σ must
be completed. In other words, it is the latest deadline of any job in σ (Equation
10).

E (σ) =
∑

〈r,e,d〉∈σ

e (8)

I (σ) = max{r | 〈r, e, d〉 ∈ σ} −min{r | 〈r, e, d〉 ∈ σ} (9)

D (σ) = max{d | 〈r, e, d〉 ∈ σ} (10)

Let S = (τ, J, e, d) be a CRT and p ∈ AllPaths (τ) be an execution path of
τ . We can calculate the execution time, tight lower bounds for the inter-release
time and deadline of any release scenario σ ∈ RS (p), by calculating these for the
execution path p. The execution time of p, E (p), is computed by the following
rules.

E (j) = e(j) (11)

E (p1〈x〉p2) = E (p1) + E (p2) (12)

E (p1 || p2) = E (p1) + E (p2) (13)

10

Likewise, the inter-release time of execution path p, denoted I (p), is calculated
as follows.

I (j) = 0 (14)

I (p1〈x〉p2) = I (p1) + x+ I (p2) (15)

I (p1 || p2) = max{I (p1) , I (p2)} (16)

Finally, we compute the deadline of execution path p, which is the earliest dead-
line for any release scenario σ ∈ RS (p). We denote this by D (p) and compute it
as follows.

D (j) = d(j) (17)

D (p1〈x〉p2) = max{D (p1) , I (p1) + x+ D (p2)} (18)

D (p1 || p2) = max{D (p1) ,D (p2)} (19)

Theorem 1. Given an execution path p, then for any release scenario σ ∈
RS (p) it holds that

a) E (p) = E (σ),
b) I (p) ≤ I (σ),
c) D (p) ≤ D (σ).

Also, there exists a release scenario σ′ ∈ RS (p), s.t. I (p) = I (σ′) and D (p) =
D (σ′).

Proof. See Appendix A. ut

To define whether a task can be scheduled on a preemptive uniprocessor, we
state the requirements for feasibility of a CRT.

Definition 5 (Feasibility). A CRT S = (τ, J, e, d) is preemptive uniprocessor
feasible if for all p ∈ AllPaths (τ) and for all σ ∈ RS (p), σ is uniprocessor
schedulable, s.t. no job misses its deadline.

4 CRT Feasibility Analysis

In this section we explain the concept of the demand bound function and the
utilization, which we will use to determine feasibility for a CRT system.

4.1 Demand Bound Function

The demand bound function (DBF) corresponds to the maximum execution
demand that can be requested and must complete in any time interval of length
t.

11

Definition 6 (Demand Bound Function). Given a CRT S = (τ, J, e, d) and
an interval of length t, the demand bound function dbf(S, t) is the maximum
execution demand of S in any time interval of length t.

dbf(S, t) = max{E (σ) | σ ∈ RS (p) , p ∈ AllPaths (τ) ,D (σ) ≤ t}

Note that since E (σ) ∈ N and because only a finite number of paths with
different execution demands can yield release scenarios satisfying the condition
D (σ) ≤ t, the set {E (σ) | σ ∈ RS (p) , p ∈ AllPaths (τ) ,D (σ) ≤ t} is finite.
Using Theorem 1 we can also define dbf(S, t) as follows.

dbf(S, t) = max{E (p) | p ∈ AllPaths (τ) ,D (p) ≤ t}

For details on how to compute the demand bound function, see Section 7.

Proposition 1. A CRT S = (τ, J, e, d) is infeasible if and only if for some tf
it holds that dbf(S, tf) > tf .

Proof. This result has been shown in [1] for all systems of independent tasks. The
intuition is that if the execution demand is less than the length of the interval for
any interval, then the execution demand can be satisfied. Conversely, if a CRT
is infeasible, there must be an interval for which it cannot satisfy the execution
demand. ut

4.2 Utilization

The utilization of a CRT is the maximum amount of execution time the system
can demand for each time unit in an infinite execution path. In other words, it
is the growth of the demand bound function as time goes towards infinity.

Definition 7 (Utilization). Given a CRT S = (τ, J, e, d), the utilization U(S)
is the maximum execution demand of any path with a deadline of at most the
length of the time interval, divided by the same length as time goes towards
infinity.

U(S) = lim
t→∞

dbf(S, t)
t

A utilization greater than 1 implies infeasibility, since jobs will begin to
accumulate and at some point a job will miss its deadline.

Proposition 2. A CRT S is infeasible if U(S) > 1.

Proof. From Definition 7, U(S) > 1 implies the existence of some t, s.t. dbf(S,t)
t >

1. Rewriting this yields dbf(S, t) > t, which by Proposition 1 implies infeasibility.
ut

12

We now give an inductive definition of utilization.

US(j) = 0 (20)

US(T1〈x〉T2) = max{US(T1), US(T2)} (21)

US(T1 || T2) = US(T1) + US(T2) (22)

US(T1+T2) = max{US(T1), US(T2)} (23)

US(Tω) = max

{
US(T), sup

{
E (p)

I (p)
| p ∈ Paths (T)

}}
(24)

Theorem 2. Given a CRT S = (τ, J, e, d), we have U(S) = US(τ).

Proof. Given a CRT S = (τ, J, e, d) we prove by structural induction on τ that
U(S) = US(τ).

If τ = j, the utilization is 0 (Equation 20), since no infinite path can exist in
τ .

If τ = T1〈x〉T2, then US(τ) = max{US(T1), US(T2)} (Equation 21). If we
construct CRTs S1 = (T1, J, e, d) and S2 = (T2, J, e, d), then by the induction
hypothesis we need only show U(S) = max{U(S1), U(S2)}. Sequential composi-
tion does not give rise to any infinite behaviour, unless it occurs in either T1 or

T2. Thus, U(S) = lim
t→∞

dbf(S,t)
t is either

(i) infinite execution in S1 given by lim
t→∞

dbf(S1,t)
t = U(S1) or

(ii) finite execution in S1 followed by infinite execution in S2, given by

lim
t→∞

dbf(S1,k)+dbf(S2,t)
k+t , where k is a constant.

Note that the latter case (ii) can be written as lim
t→∞

dbf(S2,t)
t = U(S2) since finite

execution in S1 has no effect when t goes towards infinity.
If τ = T1 || T2 the utilization is US(T1) + US(T2) (Equation 22). Again we

can construct CRTs S1 = (T1, J, e, d) and S2 = (T2, J, e, d). By the induction
hypothesis we only show U(S) = U(S1) + U(S2). Again, parallel composition
does not give rise to any infinite behaviour, unless it occurs in either T1 or T2.
However, infinite behaviour can continue in both T1 and T2 simultaneously. Thus
we can rewrite U(S) as follows.

U(S) = lim
t→∞

dbf(S, t)
t

= lim
t→∞

dbf(S1, t) + dbf(S2, t)
t

= lim
t→∞

dbf(S1, t)
t

+ lim
t→∞

dbf(S2, t)
t

= U(S1) + U(S2)

If τ = T1+T2 the utilization is max{US(T1), US(T2)} (Equation 23). Again
we construct CRTs S1 = (T1, J, e, d) and S2 = (T2, J, e, d). By the induction
hypothesis we have U(S1) = US(T1) and U(S2) = US(T2). Since choice compo-
sition does not give rise to any infinite behaviour, any such behaviour must take
place in T1 or T2. Thus, U(S) = max{U(S1), U(S2)}.

13

If τ = Tω the utilization is the maximum of US(T) and E(p)
I(p) , where

p ∈ Paths (T) (Equation 24). Let S1 = (T, J, e, d) be a CRT. Notice that any
nested infinite behaviour in T is accounted for in US(Tω) with US(T), which
by induction hypothesis is U(T). This composition does, however, give rise to
infinite behaviour, for instance an execution path p ∈ Paths (T) can be repeated

infinitely. Thus, U(S) ≥ E(p)
I(p) , for any p ∈ Paths (T), as any path p ∈ Paths (T)

can be repeated infinitely.
An infinite path using Tω may also consist of different execution paths

through T , yet this will not give a higher value for U(τ). Consider the case
where an infinite execution path pinf using Tω consists of the infinite repetition
of p1, p2 ∈ Paths (T), e.g. pinf = p1〈0〉p2〈0〉 We now show by contradic-

tion that
E(pinf)
I(pinf)

will never be higher than E(p1)
I(p1)

and E(p2)
I(p2)

. Thus, combinations

of paths, such as it is done in pinf , cannot yield a higher utilization. Assume
E(pinf)
I(pinf)

= E(p1)+E(p2)
I(p1)+I(p2)

> max
{

E(p1)
I(p1)

, E(p2)
I(p2)

}
. We now write as follows.

E (p1)

I (p1)
<

E (p1) + E (p2)

I (p1) + I (p2)

m
E (p1) · (I (p1) + I (p2)) < I (p1) · (E (p1) + E (p2))

m
I (p2) · E (p1) < I (p1) · E (p2)

m
E (p1)

I (p1)
<

E (p2)

I (p2)

The same can be done with E(p2)
I(p2)

< E(p1)+E(p2)
I(p1)+I(p2)

, yielding E(p2)
I(p2)

< E(p1)
I(p1)

. Thus

we have a contradiction. This can be generalized to arbitrarily many execution
paths. Thus, no infinite execution path consisting of combinations of different

paths through T can yield a higher utilization than sup
{

E(p)
I(p) | p ∈ Paths (T)

}
.

ut

5 Computation of Utilization

Because the set of execution paths Paths (T) through a task T , used in Equation
24, may be infinite, the rules in Equations 20 to 24 cannot be used alone to
compute the utilization.

In Equation 24 we say that the utilization of Tω is the execution demand
divided by the accumulated inter-release time for any execution path through
T . However, by considering the utilization of T , it is enough to consider only
execution paths going through subcycles in T once. Using the following rules we
can compute the execution demand and inter-release time in one tuple for each
path through a task T , where subcycles in T are not repeated.

14

ut(j) = {〈e(j), 0〉} (25)

ut(T1〈x〉T2) = {〈e1 + e2, i1 + i2 + x〉 | 〈e1, i1〉 ∈ ut(T1),

〈e2, i2〉 ∈ ut(T2)} (26)

ut(T1 || T2) = {〈e1 + e2,max{i1, i2}〉 | 〈e1, i1〉 ∈ ut(T1),

〈e2, i2〉 ∈ ut(T2)} (27)

ut(T1+T2) = ut(T1) ∪ ut(T2) (28)

ut(Tω) = ut(T) (29)

The correctness of the rules for the computation of ut(T) can be proven using
structural induction. We will now see, how utilization tuples allow us to calculate
the utilization of a CRT with a Tω.

Lemma 1. The utilization of Tω, US(Tω), can be computed as
max

{
US(T),max

{
e
i | 〈e, i〉 ∈ ut(T), i 6= 0

}}
Proof. The only case where E(p)

I(p) can be greater than e
i , where p ∈ Paths (T)

and 〈e, i〉 ∈ ut(T), is if there is some subcycle in T , s.t. repeating this subcycle

infinitely many times yields a higher utilization. It holds that US(T) ≥ E(p)
I(p) ,

where p ∈ Paths (T), since the sequential composition of two cycles cannot yield
a greater utilization, see proof of Theorem 2. Consequently, we need not consider
the case of infinite paths in T having a greater utilization than US(T) or e

i , where
〈e, i〉 ∈ ut(T). ut

Example 4 Recall the environmental sensor in Fig. 1a. A relevant question
is now how many sensors we can run in parallel on a single processor. We
know that if the utilization is greater than 1 then the system is not feasible
so we can start by calculating the utilization for one task.

US(Te) = US((j1〈30〉((j2〈40〉j3) || (j4+j5)))ω)

= max{US((j1〈30〉((j2〈40〉j3) || (j4+j5)))),
e

i
| 〈e, i〉 ∈ ut((j1〈30〉((j2〈40〉j3) || (j4+j5)))ω)}

These can be calculated separately as:

ut(j1) = {〈1, 0〉}
ut(j2〈40〉j3) = {〈10, 40〉}
ut(j4+j5) = ut(j4) ∪ ut(j5)

= {〈2, 0〉, 〈4, 0〉}
ut((j2〈40〉j3) || (j4+j5)) = {〈12, 40〉, 〈14, 40〉}

ut(j1〈30〉((j2〈40〉j3) || (j4+j5))) = {〈13, 70〉, 〈15, 70〉}
US((j1〈30〉((j2〈40〉j3) || (j4+j5)))) = 0

15

Thus US(Te) = 15
70 ≈ 0.22. This means that we can at most run four sensors

on the same processor, as multiplying this value by more than 4 will yield
a utilization greater than 1.

Now that we have established a method for calculating the utilization, we
state the following complexity result.

Theorem 3. Given a CRT S = (τ, J, e, d) the utilization is computable in
pseudo-polynomial time.

Proof. Following Theorem 2, it holds that U(S) = US(τ), and given Lemma
1, US(τ) is computable. Notice that the rules for US(S), with the exception of
US(Tω), are defined inductively on the structure of τ , so these can be evaluated in
polynomial time. Using Lemma 1, US(Tω) can be computed with ut(T). Since
ut(T) is defined inductively on the structure of T , a subterm will never be
processed more than once. This implies that e ≤

∑
j∈J

e(j) for all 〈e, i〉 ∈ ut(τ),

since the execution time of a job cannot be included in 〈e, i〉 more than once.
The same argument applies to the occurrences of inter-release times, meaning
that the amount of tuples, and hence the calculation of utilization, is pseudo-
polynomial in the input S. ut

6 Upper Bound for Demand Bound Function

As previously mentioned, the utilization of a CRT is the maximum growth of the
demand bound function for the CRT, as presented in [12]. The demand bound
function of a CRT is defined for all time units, so if we want to use it to determine
feasibility we need to check dbf(S, t) < t for all t (Proposition 1). Consequently,
to determine feasibility, we must establish a bound for the DBF for which the
feasibility test may be resolved in a finite number of steps. We now demonstrate
how the utilization may be exploited to determine this bound for the demand
bound function. First we observe that any path in τ may be expressed on the
following form.

Lemma 2. Given a CRT S = (τ, J, e, d), where the configuration τ only consists
of one task T (τ = T), any path p ∈ AllPaths (τ) can be written on the form

p1s〈x1〉p1c〈y1〉 . . . 〈xn〉pns 〈yn〉pnc

where no job occurs more than once in all pis, for 0 < i ≤ n, and pic ∈ Paths (Tω1)
for some subterm Tω1 of T .

16

Proof. If a job occurs more than once in the execution path, it must be inside
some subterm Tω1 of T and by the structural restrictions of subtasks (Definition
1), a parallel composition cannot contain an iteration. So, for any parallel sub-
term S1 || S2 of T , S1 and S2 do not contain any iterations. Thus, an execution
path p ∈ AllPaths (τ) will never have the form p1c || p2c . . . , since all the parallel
compositions in p can be in either pis or pic for some i, 0 < i ≤ n. ut

With Lemma 2 we can now use the utilization to find an upper bound for
the demand bound function. We first prove this for one CRT task.

Lemma 3. For a CRT S = (τ, J, e, d) and time interval length t, where the
configuration τ only consists of one task T (τ = T), the following holds.

dbf(S, t) ≤ U(S) · t+
∑
j∈J

e(j)

Proof. Given a time interval of length t, let p be an execution path s.t. E (p) =
dbf(S, t) and D (p) ≤ t. Note that from Definition 6, it follows that p is a path
with the maximum execution demand in any time interval of length t.

To prove Lemma 3 we show that E (p) ≤ U(S) · t +
∑
j∈J e(j). Following

Lemma 2, we can write p on the form p = p1s〈x1〉p1c〈y1〉 . . . 〈xn〉pns 〈yn〉pnc , where
for all i, 0 < i ≤ n, no job occurs more than once in pis and pic ∈ Paths (Tω1) for
some Tω1 construction in T . In other words, pic for 0 < i ≤ n, are the subpaths
in p that repeat a cycle Tω1 one or more times.

As the order in which the execution time is summed does not matter, we
can write E (p) as Equation 30. We know that each job j ∈ J can at most occur
once in each of the subpaths p1s to pns , giving us Equation 31. From Equation
24, in the description of how to compute utilization, it follows that U(S) is the

maximum of
E(p′)
I(p′) , for any p′ ∈ Paths (T1), where Tω1 is in T . Note that p1c to

pnc are all in Paths (Tω1) from some Tω1 in T , so U(S) ≥ E(pic)
I(pic)

where 0 < i ≤ n.

This allows us to write Equation 32. From the observation that
n∑
i=1

I
(
pic
)
≤ I (p),

we get Equation 33. With the fact that I (p) ≤ D (p) ≤ t, we can now write
Equation 34, which proves Lemma 3.

17

E (p) =

n∑
i=1

E
(
pis
)

+

n∑
i=1

E
(
pic
)

(30)

≤
∑
j∈J

e(j) +

n∑
i=1

E
(
pic
)

(31)

≤
∑
j∈J

e(j) +

n∑
i=1

U(S) · I
(
pic
)

(32)

≤
∑
j∈J

e(j) + U(S) · I (p) (33)

≤
∑
j∈J

e(j) + U(S) · t (34)

ut

We can extend this result to a CRT task system as follows.

Theorem 4. For a CRT S = (τ, J, e, d) and time interval length t, we have

dbf(S, t) ≤ U(S) · t+
∑
j∈J

e(j)

Proof. To prove Theorem 4 we observe that τ is of the form τ = T1 || . . . || Tn,
see Definition 1.

From Definition 1 we know that each job j ∈ J is only used in τ once. Thus j
is only used in one task Ti where 0 < i ≤ n. This allows us to construct disjoint
subsets J1, . . . , Jn ⊆ J , s.t. only jobs from J1 occur in T1 and Ji ∩ Jj = ∅ for
i 6= j.

We now construct CRTs Si = (Ti, Ji, e, d), for all i where 0 < i ≤ n. The
execution demand for parallel constructions is given by the sum of the execution
times of the individual components. Thus, we can rewrite dbf(S, t) as in Equation
35. Since every CRT Si, for 0 < i ≤ n, only has one task, Lemma 3 allows us to
write Equation 36.

As J1 to Jn are disjoint, we can rewrite this as Equation 37. From Equation
22, in the description of how to compute utilization, we know that U(S) =
n∑
i=1

U(Si), which allows us to write Equation 38, proving Theorem 4.

18

dbf(S, t) =

n∑
i=1

dbf(Si, t) (35)

≤
n∑
i=1

U(Si) · t+
∑
j∈Ji

e(j)

 (36)

≤ t ·
n∑
i=1

U(Si) +
∑
j∈J

e(j) (37)

≤ t · U(S) +
∑
j∈J

e(j) (38)

ut

This leads to the following result.

Corollary 1. A CRT S = (τ, J, e, d), where U(S) < 1, is preemptive uniproces-
sor feasible if and only if dbf(S, t) ≤ t, for all t < B, where

B =

∑
j∈J

e(j)

1− U(S)

Proof. We shall show by contradiction that if dbf(S, t) < t for all t < B, then
S is feasible. Assume that S is infeasible, U(S) < 1 and dbf(S, t) < t for all
t < B. Then, by Proposition 1, there is some tf , s.t. dbf(S, tf) > tf (Equation
39) and by assumption we have tf ≥ B. Using Theorem 4 we can write this as
in Equation 40. This can be rewritten through Equation 40 to Equation 42. As
U(S) < 1 we have that (1 − U(S)) is strictly positive, which allows us to write
Equation 44. This is the same as to state that tf < B, contradicting the initial
assumption that dbf(S, t) < t for all t < B.

tf < dbf(S, tf) (39)

tf < U(S) · tf +
∑
j∈J

e(j) (40)

tf − U(S) · tf <
∑
j∈J

e(j) (41)

(1− U(S)) · tf <
∑
j∈J

e(j) (42)

tf <

∑
j∈J

e(j)

1− U(S)
(43)

(44)

We know that a CRT S is feasible only if dbf(S, t) ≤ t, for all t < B, because
by Proposition 1 dbf(S, t) > t implies infeasibility. ut

19

7 Computation of the Demand Bound Function

We can use the different types of execution paths in a CRT, described in Example
2, to compute the demand bound function. Given an interval of length t, we are
interested in the maximum execution demand of any execution path with a
deadline less than t. Observe that some execution paths have the same values
for execution time and deadline. This fact is exploited in [12] by using demand
tuples for representing all paths with the same execution demand and deadline
in a compact abstraction. For our computations, a demand tuple 〈e, i, d〉 is an
abstraction of any path p with e = E (p), i = I (p) and d = D (p). The set of all
demand tuples over all possible paths with time bound t of a task T is denoted
by DT (T, t):

DT (T, t) = {〈E (p) , I (p) ,D (p)〉 | p ∈ AllPaths (T) ,D (p) ≤ t}

Given a CRT S = (τ, J, e, d) and an interval length t, the demand bound
function dbf(S, t) (Definition 6) can therefore be computed using DT (T, t) as
follows.

dbf(S, t) = max{e | 〈e, i, d〉 ∈ DT (τ, t)}

7.1 Computation of Demand Tuples

In order to compute DT (T, t) we introduce some auxiliary functions to generate
tuples up to some bound t. These will be used to compute demand tuples for
the different kinds of paths. We define these functions as follows.

DTtot(T, t) = {〈E (p) , I (p) ,D (p)〉 | p ∈ Paths (T) ,D (p) ≤ t} (45)

DTsuf(T, t) = {〈E (p) , I (p) ,D (p)〉 | p ∈ suffix (p′) , p′ ∈ Paths (T) ,

D (p) ≤ t} (46)

DTpre(T, t) = {〈E (p) , I (p) ,D (p)〉 | p ∈ prefix (p′) , p′ ∈ Paths (T) ,

D (p) ≤ t} (47)

The first function, DTtot(T, t), denotes all the demand tuples that quantify over
any path through T with a deadline below bound t. This function is not con-
cerned with paths that start or end inside T . Since we also need to have tuples
for these, i.e. for paths that are prefixes or suffixes of some path going all the way
through T , we make use of DTpre(T, t) and DTsuf(T, t) to quantify over these,
respectively.

Furthermore we define two functions which compute merges of sets of tuples.
First, we can define the parallel merge function mpar which computes the parallel
combination of tuples up to some given bound t.

mpar(dt1, dt2, t) = {〈e1 + e2, i, d〉 | i = max{i1, i2}, d = max{d1, d2}, d ≤ t,
〈e1, i1, d1〉 ∈ dt1, 〈e2, i2, d2〉 ∈ dt2}

The function mpar takes the two sets of tuples dt1 and dt2 that each cor-
responds to one of the two branches T1 or T2 in a parallel construction. When

20

these tuples are merged, a new set of tuples is constructed, where each tuple
represents one or more paths within the expression T1 || T2 that has a deadline
below bound t. Note that the formulas used to calculate the execution time,
inter-release time and deadline of the new tuple correspond to the ones used to
calculate the same values for a path.

Similarly we can define a sequential merge function, mseq, that merges two
sets of tuples in a sequential composition.

mseq(dt1, dt2, x, t) = {〈e1 + e2, i1 + x+ i2, d〉 | d = max{d1, i1 + x+ d2}, d ≤ t,
〈e1, i1, d1〉 ∈ dt1, 〈e2, i2, d2〉 ∈ dt2}

The function mseq merges demand tuples from dt1 with tuples from dt2 to
reflect that the paths they represent were concatenated sequentially with the
inter-release time x in between.

We can now computeDT (T, t) with the help of the auxiliary functions defined
above.

DT (j, t) = {〈e(j), 0, d(j)〉, 〈0, 0, 0〉} (48)

DT (T1〈x〉T2, t) = mseq

(
DTsuf(T1, t), DTpre(T2, t), x, t

)
(49)

∪DT (T1, t) ∪DT (T2, t)

DT (T1 || T2, t) = mpar

(
DT (T1, t), DT (T2, t), t

)
(50)

DT (T1 + T2, t) = DT (T1, t) ∪DT (T2, t) (51)

DT (Tω, t) = DT (T, t) ∪mseq(DTsuf(T, t), DTpre(T
ω, t), 0, t) (52)

Following Equation 48 we say that any path within a task, consisting of
a single job j is either the empty path represented by 〈0, 0, 0〉, or the path
consisting of j denoted by 〈e(j), 0, d(j)〉.

In Equation 49 we state that any path within a sequential composition of T1
and T2 with inter-release time x, is a path within either T1 or T2, or a sequential
merge of any path starting in T1 and ending in T2 with inter-release time x
between the two parts.

In Equation 50 we say that any path within a task consisting of a parallel
composition, of subtasks T1 and T2, is a parallel merge of any path within T1
with any path within T2.

In Equation 51 we state that any path within a task, consisting of the choice
between T1 and T2, is any path within either T1 or T2 satisfying the bound t. In
Equation 52 we state that any path within a task, consisting of the repetition of
T , is any path within T or any path starting in T sequentially merged with any
path ending in Tω.

In Equations 45, 46 and 47 we defined DTtot, DTsuf and DTpre in terms of
paths. To compute the demand tuples for each of these functions we will now
present a set of rules for each function.

21

DTtot(j, t) = {〈e(j), 0, d(j)〉} (53)

DTtot(T1〈x〉T2, t) = mseq

(
DTtot(T1, t), DTtot(T2, t), x, t

)
(54)

DTtot(T1 || T2, t) = mpar

(
DTtot(T1, t), DTtot(T2, t), t

)
(55)

DTtot(T1 + T2, t) = DTtot(T1, t) ∪DTtot(T2, t) (56)

DTtot(T
ω, t) = DTtot(T, t) ∪mseq(DTtot(T, t), DTtot(T

ω, t), 0, t) (57)

For a task consisting of a job (Equation 53), this task is simply the path
consisting of the single job, abstracted by a single tuple.

In Equation 54 and Equation 55 we say that the paths going through a
sequential or parallel composition, are the sequential or parallel merges of paths
through the subtasks, respectively.

For the choice between two tasks (Equation 56) we say that any path through
either task is a path through the choice.

In Equation 57 we say that a path through a task, consisting of the repetition
of T , is any path through T or any path through T sequentially merged with
any path through Tω.

The following rules for the function DTpre compute demand tuples for all
paths p ∈ prefix (T) for a task T.

DTpre(j, t) = {〈e(j), 0, d(j)〉, 〈0, 0, 0〉} (58)

DTpre(T1〈x〉T2, t) = DTpre(T1, t) ∪mseq(DTtot(T1, t), DTpre(T2, t), x, t) (59)

DTpre(T1 || T2, t) = mpar

(
DTpre(T1, t), DTpre(T2, t), t

)
(60)

∪DTpre(T1, t) ∪DTpre(T2, t)
DTpre(T1 + T2, t) = DTpre(T1, t) ∪DTpre(T2, t) (61)

DTpre(T
ω, t) = mseq

(
DTtot(T

ω, t), DTpre(T, t), 0, t
)
∪DTpre(T, t) (62)

Similarly, rules for the function DTsuf, which computes demand tuples for all
paths p ∈ suffix (T) for a task T, are presented below.

DTsuf(j, t) = {〈e(j), 0, d(j)〉, 〈0, 0, 0〉} (63)

DTsuf(T1〈x〉T2, t) = mseq

(
DTsuf(T1, t), DTtot(T2, t), x

)
∪DTsuf(T2, t) (64)

DTsuf(T1 || T2, t) = mpar

(
DTsuf(T1, t), DTsuf(T2, t), t

)
(65)

∪DTsuf(T1, t) ∪DTsuf(T2, t)
DTsuf(T1 + T2, t) = DTsuf(T1, t) ∪DTsuf(T2, t) (66)

DTsuf(T
ω, t) = DTsuf(T, t) ∪mseq(DTsuf(T, t), DTtot(T

ω, t), 0, t) (67)

The rules for computation of DTpre and DTsuf are quite similar. The rules
for a single job (Equation 58 and Equation 63) are the same, where the empty
path is represented by 〈0, 0, 0〉 and the path consisting of j is represented by
〈e(j), 0, d(j)〉.

22

For sequential composition (Equation 59 and Equation 64) we consider the
sequential merge of any path that goes through either the first or last task, with
any path that either starts or ends in the last or the first task, respectively.

The parallel composition of two subtasks T1 and T2 is the parallel merge of
tuples representing paths starting or ending in the subtasks, as noted in Equation
60 and Equation 65, respectively.

Choice is constructed using the same principle as for DTtot (Equation 61
and Equation 66), and repetition can be defined using DTtot (Equation 62 and
Equation 67). This recursive rule will be the only source of infinite sets.

Example 5 Recall the environmental sensor in Fig. 1a. In Example 4 we
calculated the utilization of this model to be 0.22. To calculate the demand
bound function for the model in which two sensors are run on the same
uniprocessor we can establish the value of the bound that we need to com-
pute the demand bound function up to.

B =

∑
j∈J

e(j)

1− U(S)
=

34

1− 0.44
≈ 60

We can now calculate the demand bound function for S2 = Te || Te
up to the bound of 60. This is shown in Fig. 2a. Note that the path
((j3 || j5)〈0〉j1〈30〉(j2 || j5)) || ((j3 || j5)〈0〉j1〈30〉(j2 || j5)) gives rise to
the highest demand within the bound. Since the value of the demand bound
function is less than the value of time function, the system is feasible.

Similarly, we can calculate the demand bound function for S2 =
Te || Te || Te. This is shown in Fig. 2b. In this case the demand bound
function intersects the time function, and thus the system is infeasible. The
first violation is obtained for t = 25 where the value of DBF reaches 33.
This value can be obtained by releasing j3, j5 and j1 in all three tasks
simultaneously.

We will now state our main theorem.

Theorem 5. Given CRT S, where U(S) < 1, feasibility is decidable in pseudo-
polynomial time.

Proof (Sketch). Using Corollary 1, there is an upper bound B, meaning that we
need only check dbf(S, t) ≤ t for all t ≤ B. Given Theorem 3 the utilization
U(S), and by implication B, is computable in pseudo-polynomial time. Given
this, checking dbf(S, t) ≤ t for all t ≤ B can be done in pseudo-polynomial time,
assuming the demand bound function is computable in polynomial time.

Rules for DT , DTtot, DTpre and DTsuf can be proven correct by structural
induction; the arguments for correctness are present in the explanations of this

23

section. Furthermore, all demand tuples have an execution demand, an inter-
release time and a deadline less than t, where t ≤ B, meaning that we have less
than B3 tuples to consider. Note that the execution demand technically could be
larger than t and B, but if such a tuple were encountered, no further execution
would be necessary, since the CRT S would be infeasible. ut

(a) Demand bound function for the
configuration Te || Te.

(b) Demand bound function for the
configuration Te || Te || Te.

Fig. 2: Graphs showing the demand bound function for Example 5.

7.2 Prototype Implementation

The functions and auxiliary functions, presented in previous sections for com-
putation of utilization and demand bound function, generally operate as a set
of rules applied to the syntactic structure of a CRT model. These rules can be
easily implemented in any purely functional language, where pattern matching
makes the structure trivial to operate on.

For this paper we built a minimalistic implementation of the algorithms in
Haskell. Minimalistic in the sense that it was a direct translation of the functions
presented in this paper to Haskell functions. The prototype implementation al-
lowed us to verify feasibility for CRT models, i.e. the examples shown in this
paper.

The implementation can be improved with an optimization that removes
dominated tuples. We already know that a demand tuple can be discarded if it
has already been considered. The basic idea is to extend this to discard tuples
that are dominated by one that was already computed. The intuition is that if a
tuple is dominated then it does not yield any new information. This optimization
was proposed in [12]. In the following we define in the same way the concept of
domination in general terms.

Given demand tuples dt = 〈e(j), i(j), d(j)〉, dt′ = 〈e(j′), i(j′), d(j′)〉, we say
that dt dominates dt′ if:

e(j) ≥ e(j′) ∧ d(j) ≤ d(j′) ∧ j = j′

24

Moreover, if the tuples are sorted by inter-release time (or deadline) in ascend-
ing order as they are generated, it is trivial to implement the optimization using
domination presented above. We also claim that there is a pseudo-polynomial
algorithm that only uses a polynomial amount of memory, suggesting that check-
ing for feasibility of CRT models is in PSPACE.

8 Conclusion

We have considered uniprocessor feasibility testing and proposed the Concur-
rent Real-time Task model (CRT) that is syntactically more expressive than the
Digraph Real-time Task model (DRT), since CRT models allow parallel compo-
sitions of jobs within the same task.

With this model it is possible to more closely model real world systems,
where jobs require explicit use of synchronization in the control flow. We have
shown how to calculate utilization for CRTs in pseudo-polynomial time and used
the concept of the demand bound function to determine feasibility of CRTs. We
have demonstrated how an upper bound for the demand bound function may be
computed for CRTs. Finally, we can determine feasibility for CRTs in pseudo-
polynomial time, similar to the DRT model.

9 Future Work

We conclude this paper with possible directions for future work. For instance, it is
of interest to formally prove that CRT models are strictly more expressive than
DRT models. It is also worth investigating the expressiveness of CRT models
compared to Extended DRT models (EDRT), presented in [11]. Preliminary
investigation suggests that EDRT models are strictly more expressive, however,
formal proofs to support this claim are necessary.

Moreover, it can be beneficial to remove the structural restrictions on CRTs,
i.e. allow loop constructions in subtasks, eliminating the need for the third syn-
tactic category. As far as computation of demand bound function is concerned
this will not be problematic, but it may, nevertheless, significantly complicate
the computation of utilization.

In relation to utilization, we consider improving the complexity of the algo-
rithm. The rules for the computation of utilization, presented earlier, are heav-
ily inspired by similar efforts for DRT models [12], which describe a pseudo-
polynomial algorithm for utilization. Yet, in [5] a similar polynomial time al-
gorithm for maximum ratio cycles is presented; an algorithm that seems likely
to be adaptable for the computation of the utilization for DRT models. This
suggests that a polynomial time algorithm for finding the utilization may exist
for both DRT and CRT models.

The complexity of the feasiblity problem is also an important question for
both CRT and DRT models. We believe feasibility for CRT models to be co-
NP-hard and for DRT models to be co-NP-complete. We consider proving these
statements as an obvious direction for future work.

25

Another problem left open both by this paper, [12] and [11], is how to decide
feasiblity for CRT or DRT models with a utilization of exactly one. In fact, it is
even possible that the feasibility problem, for both models with a utilization of
one, is undecidable.

References

1. Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok. Generalized
multiframe tasks. Real-Time Systems, 17:5–22, 1999.

2. Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput. Surv., 43(4):35, 2011.

3. Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task automata:
Schedulability, decidability and undecidability. Inf. Comput., 205(8):1149–1172,
2007.

4. J.D. and Ullman”. Np-complete scheduling problems. Journal of Computer and
System Sciences, 10(3):384 – 393, 1975.

5. Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids, chapter
Chapter 13, pages 94–97. Holt, Rinehart and Winston, New York, USA, 1976.

6. C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

7. Jane W.S. Liu. Real-time Systems. Prentice Hall, 2000.
8. Aloysius K. Mok and Deji Chen. A multiframe model for real-time tasks. IEEE

Trans. Software Eng., 23(10):635–645, 1997.
9. Aloysius Ka-Lau Mok. Fundamental design problems of distributed systems for

the hard-real-time environment. Massachusetts Institute of Technology, 1977.
10. Michael Sipser. Introduction to the theory of computation. Thomson Course

Technology, 2006.
11. M. Stigge, P. Ekberg, N. Guan, and Wang Yi. On the tractability of

digraph-based task models. In Real-Time Systems (ECRTS), 2011 23rd
Euromicro Conference on, pages 162 –171, july 2011.

12. Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The digraph real-time
task model. In IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 71–80, 2011.

13. Apostolos Syropoulos. Mathematics of multisets. In WMP, pages 347–358, 2000.

26

A Proof of Theorem 1

Theorem 1. Given an execution path p, for any release scenario σ ∈ RS (p) it
holds that:

a) E (p) = E (σ),
b) I (p) ≤ I (σ),
c) D (p) ≤ D (σ).

Also, there exists a release scenario σ′ ∈ RS (p) s.t. I (p) = I (σ′) and D (p) =
D (σ′).

Proof. We prove Theorem 1 by structural induction on the execution path p.
We start by proving Theorem 1a.

When the execution path p consists of only one job, p = j, the execution time
of p is equal to e(j) (Equation 11). In this case the release scenario σ is defined
as in Definition 3a and E (σ) = e(j). So, for p = j we have that E (p) = E (σ).

Consider the rule p = p1〈x〉p2; the execution time of p is given by E (p1) +
E (p2) (Equation 12). In this case the release scenario σ is given by Definition 3b.
By the induction hypothesis assume that E (p1) = E (σ1) and E (p2) = E (σ2).
Since σ includes all the tuples from σ1 and the tuples from σ2, where the inter-
release time and deadline have changed, then in this case it also holds that
E (p) = E (σ).

Consider the rule p = p1 || p2; the execution time of p is again given by
E (p1) + E (p2) (Equation 13). In this case the release scenario σ is given by
Definition 3c. By the induction hypothesis assume that E (p1) = E (σ1) and
E (p2) = E (σ2). Again σ includes exactly all the tuples from σ1 and σ2, there-
fore E (p) = E (σ).

Thus, we have proven Theorem 1a and proceed to prove Theorem 1b.

Consider p = j; the inter-release time of p is 0 (Equation 14). The release
scenario σ only includes one tuple of the form 〈r, e, d〉 (Definition 3a), so Equation
9 can be rewritten to I (σ) = r− r = 0. Therefore we conclude that I (p) = I (σ)
in this case.

Consider the case where p = p1〈x〉p2; the inter-release time of p is given
by I (p1) + I (p2) + x (Equation 15). In this case the release scenario σ is given
by Definition 3b. By the induction hypothesis assume that I (p1) ≤ I (σ1) and
I (p2) ≤ I (σ2). The inter-release time of a release scenario depends on the dif-
ference between the tuple with the greatest release time and the tuple with the
smallest release time (Equation 9). We can then write the following:

I (σ1) = r1max − r1min (68)

I (σ2) = r2max − r2min (69)

where r1max
and r1min

are the maximum and minimum release times of the tuples
in σ1, in the order mentioned. Likewise, r2max and r2min are the maximum and

27

minimum release times of the tuples in σ2, respectively. The release scenario σ
includes the unchanged tuples from σ1 as well as the tuples from σ2, where the
release times are increased by r1max + x. Since all the tuples in σ2 have their
inter-release time increased by the same value the relation between them remains
the same. Thus, we can express the inter-release time of σ below.

I (σ) = max{r2max + r1max + x, r1max} −min{r1min , r2min + r1max + x}

Clearly, r2max + r1max + x ≥ r1max and r1min ≤ r2min + r1max + x, so the
inter-release time of σ becomes the following:

I (σ) = r2max
+ r1max

+ x− r1min
= r2max

+ x+ I (σ1)

≥ r2max
− r2min

+ x+ I (σ1) = I (σ2) + x+ I (σ1) ≥ I (p)

Note that I (p) = I (σ), when r2min
= 0, I (σ2) = I (p2) and I (σ1) = I (p1).

Consider the parallel case p = p1 || p2; the inter-release time of p is the
maximum inter-release time between I (p1) and I (p2) (Equation 16). In this case
σ is given by Definition 3c and the inter-release time of σ1 and σ2 are again given
by Equations 68-69. The release scenario σ includes exactly the same tuples that
are in σ1 and σ2. So, the inter-release time of σ (Equation 9) can be written as
the following.

I (σ) = max{r1max , r2max} −min{r1min , r2min}

Thus, we have the following four cases.

1. r1max ≥ r2max and r1min ≤ r2min , I (σ) = r1max−r1min = I (σ1), I (σ) ≥ I (σ2)
2. r1max

> r2max
and r1min

> r2min
, I (σ) = r1max

−r2min
> I (σ1), I (σ) > I (σ2)

3. r1max
< r2max

and r1min
< r2min

, I (σ) = r2max
−r1min

> I (σ1), I (σ) > I (σ2)
4. r1max

≤ r2max
and r1min

≥ r2min
, I (σ) = r2max

−r2min
= I (σ2), I (σ) ≥ I (σ1)

By the induction hypothesis assume that I (p1) ≤ I (σ1) and I (p2) ≤ I (σ2).
Hence the inter-release time for p will either be I (σ1) or I (σ2), which in any case
will be less than or equal to I (σ). Note that I (p) = I (σ) when both the first
case holds together with I (σ1) ≥ I (σ2) and the second case holds together with
I (σ2) ≥ I (σ1).

Finally, we will prove Theorem 1c.

Here we first consider the execution path that only includes one job, i.e.
p = j. The deadline of the path is d(j) (Equation 17). In this case the release
scenario σ is defined as in Definition 3a and only contains one tuple with deadline
d(j) + c, where c ∈ R≥0.

The deadline of a release scenario is given by the largest deadline of the tuples
(Equation 10). So, in this case D (p) = d(j) ≤ D (σ).

Now consider the path p = p1〈x〉p2; the deadline of the path is given by
the maximum between the deadline of p1 and I (p1) + x+ D (p2) (Equation 18).

28

Any release scenario will be given by Definition 3b. Let d1max
and d2max

be
the deadlines of the tuples with maximum deadline in σ1 and σ2, respectively.
Then D (σ1) = d1max and D (σ2) = d2max . Any release scenario σ contains all
the tuples from σ1 and all the tuples from σ2, where the last ones have their
deadlines increased by x+r1max

, where r1max
is the maximum release time among

the tuples in σ1. Because all tuples in σ2 have been increased by the same value,
their ordering is preserved, hence we can write the deadline of σ as the equation
below.

D (σ) = max{d1max , d2max + x+ r1max}

Now assume by the induction hypothesis that D (p1) ≤ D (σ1) and D (p2) ≤
D (σ2). We have already shown that I (p1) ≤ I (σ1), so we can rewrite Equation
18 by first replacing the inter-release time and then the deadlines by those from
the release scenarios.

D (p) ≤ max{D (p1) , I (σ1) + x+ D (p2)} ≤ max{D (σ1) , I (σ1) + x+ D (σ2)}

We also know that I (σ1) = r1max − r1min (Equation 9). It follows that

D (p) ≤ max{d1max
, d2max

+ x+ r1max
− r1min

} ≤ D (σ)

Note also that D (p) = D (σ) when r1min
= 0, D (p1) = D (σ1) and D (p2) =

D (σ2).
Finally, consider when p = p1 || p2. The deadline of this path is given by

Equation 19. In this case σ is given by Definition 3c. Let d1max and d2max be the
deadlines of the tuples with the maximum deadlines in σ1 and σ2, respectively.
Thus, the deadline of σ is given by max{d1max

, d2max
} (Equation 10). By the

induction hypothesis assume that D (p1) ≤ D (σ1) and D (p2) ≤ D (σ2). We can
rewrite Equation 19.

D (p) ≤ max{D (σ1) ,D (σ2)} ≤ D (σ)

Note that D (p) = D (σ) when D (p1) = D (σ1) and D (p2) = D (σ2). ut

29

B Expressiveness of CRTs

In this section we shall investigate the expressiveness of CRTs. We assert that
CRT systems are at least as expressive as DRTs. That is, for every DRT there
exists a CRT that yields similar sets of release scenarios. In addition, we claim
that there exist CRTs that can produce job release scenarios that cannot be
produced by any DRT. Finally, we compare the CRT model to the EDRT model
and claim that the number of global constraints and the size of the graph grow
exponentially with the number of jobs in parallel subtasks, as well as the number
of parallel subtasks.

We can now define the concept of release scenario similarity, which is used
to establish an expressiveness criterion between sporadic job models.

Definition 8 (Release Scenario Similarity). Given two release scenarios σ1
and σ2, we say that σ1 and σ2 are similar if for any release tuple (r1, e1, d1) ∈ σ1,
where e1 6= 0, there exists a release tuple (r2, e2, d2) ∈ σ2, s.t. r1 = r2, e1 =
e2, d1 = d2 and contrariwise.

Definition 9 (Expressiveness). Let C1 and C2 be classes of sporadic job mod-
els. We then say that C1 is at least as expressive as C2, C2 � C1, if for any
τ ∈ C2 there exists some τ ′ ∈ C1 such that any release scenario of τ is similar
to a release scenario of τ ′.

If C1 � C2 and C2 6� C1, we write C1 ≺ C2 and say that C2 is strictly more
expressive than C1.

To prove that the CRT model is at least as expressive as the DRT model we
shall now summarize the semantics of the DRT model.

B.1 Digraph Real-Time Task Model

The DRT model [12] consists of a set of independent tasks.

Definition 10 (DRT Task). A DRT task TDRT is a 5-tuple TDRT =
(V, E , ρ, e, d), where

– V is a finite set of jobs,
– E ⊆ V × V is a finite set of edges,
– ρ : E → N is the inter-release times of the edges,
– e : V → N is the worst case execution times of the jobs and
– d : V → N is the relative deadlines of the jobs.

Definition 11 (DRT). A Digraph Real-time Task system τDRT is a finite set
of tasks.

The release sequence of a DRT task TDRT is given by a sequence of re-
lease tuples (r, e, d), where each tuple represents the release of a job j at
absolute time r (the release time) with the WCET e = e(j) and absolute
deadline d = d(j) + r for a job in TDRT . A release sequence σTDRT

=
[(r1, e1, d1), (r2, e2, d2), . . . , (rn, en, dn)] is valid if and only if there exists a path
π = (v1, v2, . . .) in TDRT s.t. for i, 1 ≤ i ≤ n it holds that

30

a) ei = e(vi),
b) di = ri + d(vi) and
c) ri+1 − ri ≥ ρ(vi, vi+1).

A release scenario for a DRT can be constructed using a multiset containing
all tuples in the release sequence.

B.2 Expressiveness

We now consider the DRT model to compare its expressiveness to that of the
CRT model. Any DRT task TDRT can be converted into a CRT. To show this we
use a similar approach to that of converting a deterministic finite automaton into
a generalized nondeterministic finite automaton and then to a regular expression
[10]. In this case we transform the DRT model into a generalized DRT (GDRT)
model, which can subsequently be converted into a task expression in the CRT
model syntax.

Definition 12 (GDRT). A GDRT G is a tuple (V, E , J, δ, e, d), where

– V is a finite set of vertices,
– E ⊆ V × V is a finite set of edges,
– J is a finite set of jobs,
– δ : E → CRTT is a mapping from edges to legal CRT tasks,
– e : J → N is the worst case execution times of the jobs and
– d : J → N is the relative deadlines of the jobs.

We denote a job that is released by a release tuple, which is defined sim-
ilarly as for DRTs. The release sequence generated by a GDRT G is given,
similarly to the DRT model, by a sequence of release tuples. A release sequence
σTDRT

= [(r1, e1, d1), (r2, e2, d2), . . . (rn, en, dn)] is valid if there exists a path
π = (va, vb, vc, . . .) which can generate a CRT task T = δ(va, vb)〈0〉δ(vb, vc)〈0〉 . . .
with an execution path p = j1〈x1〉j2〈x2〉j3, . . . s.t. p ∈ Paths (T) and it holds for
i, 1 ≤ i ≤ n that

a) ei = e(ji),
b) di = ri + d(ji) and
c) ri+1 − ri ≥ xi.

As for DRT models, we can construct a release scenario by constructing the
multiset containing all release tuples in the release sequence.

Definition 13 (Similarity). A DRT task TDRT and a GDRT G are said to
be similar if for any valid release scenario σTDRT

of TDRT there exists a valid
release scenario σG of G, s.t. σTDRT

is similar to σG and contrariwise.

To translate a DRT task into a CRT we introduce the CONVERT(TDRT)
algorithm (see Algorithm 1). The algorithm takes a DRT task TDRT =
(VT , ET , ρ, e, d) as input and outputs a CRT task that is similar to TDRT .

31

Algorithm 1 CONVERT(TDRT)

1. We introduce a new job, jε, s.t. e(jε) = 0, d(jε) = 0. We can now convert the DRT
task TDRT = (VT , ET , ρ, e, d) into a GDRT G = (V, E , J, δ, e, d) as follows.

– V = VT ∪ {vstart, vend}
– E = ET ∪ {(vstart, vk) | vk ∈ V \ {vstart}} ∪ {(vk, vend) | vk ∈ V \ {vend}}
– J = VT ∪ {jε}

– δ(vi, vj) =


ji〈x〉jε if (vi, vj) ∈ ET , where ji = vi, x = ρ(vi, vj)

jε if vi = vstart, vj ∈ V \ {vstart}
jε if vj = vend, vi ∈ V \ {vend}

2. If G contains only two vertices, vi and vj , output (δ(vi, vj),J,e,d).
3. Select a vertex vt ∈ V \ {vstart, vend}.
4. Construct a new GDRT G′ = (V ′, E ′, J, δ′, e, d), where

– V ′ = V \ {vt}
– E ′ = E \ {(vt, vi) | (vt, vi) ∈ E , vi ∈ V} \ {(vi, vt) |

(vi, vt) ∈ E , vi ∈ V} ∪ {(vi, vj) | (vi, vt) ∈ E , (vt, vj) ∈ E}
– For all vi, vj ∈ V, i 6= j, assign a new value to

δ′(vi, vj) =



T1〈0〉T3 + T4 if {(vi, vt), (vt, vj),
(vi, vj)} ⊆ E , (vt, vt) /∈ E

T1〈0〉T3 if {(vi, vt), (vt, vj)} ⊆ E ,
{(vt, vt), (vi, vj)} 6⊂ E(

T1〈0〉(T2)ω〈0〉T3 + T1〈0〉T3

)
+ T4 if {(vi, vt), (vt, vj),

(vt, vt), (vi, vj)} ⊆ E(
T1〈0〉(T2)ω〈0〉T3 + T1〈0〉T3

)
if {(vi, vt), (vt, vj),

(vt, vt)} ⊆ E , (vi, vj) /∈ E
T4 else

where T1 = δ(vi, vt), T2 = δ(vt, vt), T3 = δ(vt, vj) and T4 = δ(vi, vj)
5. Set G = G′ and go to step 2.

32

Note that the loop composition, Tω, means at least one iteration is performed.
Because of this a choice equal to not taking it is added in the third and fourth
line of the δ function in step 4. As a result, the final expression will have at least
one added choice for every loop in the graph.

The output of the algorithm is a CRT task expression equivalent to the DRT
task. We will now consider the correctness of the algorithm, using the similarity
between the release sequences of DRT and GDRT models.

Definition 14 (DRT-CRT Similarity). A DRT task TDRT and a CRT S are
said to be similar if for any valid release scenario σTDRT

of TDRT there exists a
valid release scenario σS of S, s.t. σTDRT

is similar to σS and contrariwise.

Lemma 4. Let TDRT = (VT , ET , ρ, e, d) be a DRT task and the CRT S =
(τ, J, e, d) be the output from CONVERT(TDRT), then S is similar to TDRT .

Proof. We prove by induction that the resulting CRT S of CONVERT(TDRT)
is similar to the input DRT TDRT . We do this by showing

(i) that the GDRT G created from TDRT in the base step (step 1 of CON-
VERT) is similar to TDRT ,

(ii) the reduced GDRT G′ created from G in the induction step (step 4 of
CONVERT) is similar to G, and

(iii) and the resulting CRT S in the final step (step 2) is similar to G.

Base Step (i)
Let TDRT = (VT , ET , ρ, e, d) be the input for CONVERT(TDRT) and G =
(V, E , J, δ, e, d) be the GDRT created in step 1.

If we have a path p = (j1, j2, . . . , jn) in TDRT , then by the construction of V
and E in step 1 the same path exists in G. Given the construction of δ, p in G will
yield the following CRT task T = j1〈x1〉jε〈0〉j2〈x2〉jε〈0〉 . . . 〈0〉jn〈0〉jε. Ignoring
empty jobs and inter-release times of zero we get T = j1〈x1〉j2〈x2〉 . . . 〈xn−1〉jn,
where xi = ρ(ji, ji+1). Given the semantics for release scenarios of DRT and
GDRT models it can be observed that p gives rise to the same release scenarios
for TDRT and G.

Note that for any path p′ in G, the same path also exists in TDRT , with the
exception of paths prefixed and suffixed with vstart or vend. However, since edges
to and from vstart and vend only carry empty jobs these will have no effect on
the similarity. Thus, TDRT and G are similar, and (i) holds.

Induction Step (ii)

Let G = (V, E , J, δ, e, d) be the GDRT before step 4 and G′ = (V ′, E ′, J, δ′, e, d)
be the reduced GDRT created, where vi was removed. We now show that for
any path p = (v1, v2, . . . , vi, . . .) in G, there is a corresponding path in G′. We
have two cases.

(a) The path π does not traverse vi.
(b) The path π traverses vi.

33

For case (a) we do not have to show anything, since the path has not
changed. In case (b) the path p′ = (v1, v2, . . . , vi−1, vi+1, . . .) gives rise to the
same release scenarios as p. Given the semantics for G′, p′ yields a CRT task
T ′ = δ(v1, v2)〈0〉δ(v2, v3) . . . δ(vi−1, vi+1) . . . , since the edge between vi−1 and
vi+1 provided by δ(vi−1, vi+1) contains both the label from vi−1 to vi, as well
as the label from any edge that might have been going from vi to itself and also
the label on the edge from vi to vi+1.

Notice that for any release scenario of a path p′ in G′, there is a path p in
G, s.t. there is a similar release scenario of p. This can be shown with the same
arguments as were used to show that cases (a) and (b) hold, with the additional
detail that a cycle term in a CRT task might be replaced with a self-loop on vi
in G.

Final Step (iii)
Note that vstart and vend is never removed in step 4. Thus, when a GDRT has
been computed in step 2, we have G = (V, E , J, δ, e, d) where V = {vstart, vend}.
We will now show that S = (δ(vstart, vend), J, e, d) is similar to G. The only
path through G is π = (vstart, vend), which yields the CRT task TCRT =
δ(vstart, vend). It can be observed that S and TCRT have the same syntactic
structure, and given that e and d are the same as in G, the models S and G
must necessarily be similar.

ut

We are now ready to state the following theorem.

Theorem 6. The class of CRT models CCRT is at least as expressive as the
class of DRT models CDRT, i.e. CDRT � CCRT.

Proof. By Lemma 4 we know that we can create a similar CRT task for every
DRT task, and by parallel composition we can create a CRT for every DRT. ut

Claim. The class of CRT models CCRT is strictly more expressive than the class
of DRT models CDRT, i.e. CDRT ≺ CCRT.

Consider a CRT S = (τCRT, J, e, d), where τCRT = T1, T1 = j1〈x1〉j2〈x2〉j3 || j4,
J = {j1, j2, j3, j4}, x1, x2 ∈ N. If we attempt to represent this CRT with different
tasks in a DRT we cannot preserve the inter-release times, x1 or x2, regardless
of how the task is broken up, since the resulting tasks are independent. Conse-
quently, the DRT model will have a larger set of release scenarios than the CRT.
Now if we retain the jobs within the same task, a starting point for obtaining the
same job release scenarios is to ensure the same set of execution paths. This can
be obtained by considering all possible interleavings of the paths in the parallel
subterm. However, for the interleaving sequence (j2, j4, j3), it is not possible to
keep track of the inter-release time x2 between j2 and j3, since there is no edge
connecting the two jobs. As a result, this solution will again either yield a larger
or smaller set of release scenarios, based on the constraints chosen for the edges
connecting the three jobs.

34

Claim. The class of EDRTs [11] CEDRT is at least as expressive as the class of
CRTs, CCRT � CEDRT.

A CRT may be converted into an EDRT by eliminating every parallel compo-
sition between tasks and converting each of them into an independent task in the
EDRT task system. From now on we will focus on the conversion of a single CRT
task into an EDRT task. Since the EDRT must encode all the possible execution
paths in the parallel constructions of the CRT, it will need to include all the
possible interleavings of the branches. This gives an exponential growth in the
size of the graph. Global constrainsts are needed to maintain the inter-release
time between the sequential compositions of jobs in a parallel subterm. Each of
these sequential compositions requires one global constraint for each interleav-
ing, where one or more jobs separate the previously connected jobs. The number
of interleavings then depends on the following: the number of branches in the
parallel composition, where the subterm that should be converted is located and
the number of jobs in each branch. For each parallel composition there is at least
one sequence, where the job is in between the two jobs connected in the sequen-
tial composition. When there are more jobs in the same subterm, the number
of interleavings depends on the possible interleavings of this subterm, includ-
ing all the other parallel compositions, besides the one that is being considered.
Once again this number is exponential for the same reasons stated earlier. This
holds for all sequential subterms in a parallel composition, therefore giving an
exponential number of global constraints.

35

	The Concurrent Real-Time Task Model

